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Abstract

The fundamental theorem of surface theory classically asserts that, if a field of positive-definite symmetric matrices (aαβ) of
order two and a field of symmetric matrices (bαβ) of order two together satisfy the Gauss and Codazzi–Mainardi equations in a

connected and simply-connected open subset ω of R
2, then there exists an immersion θ :ω → R

3 such that these fields are the first
and second fundamental forms of the surface θ(ω) and this surface is unique up to proper isometries in R

3.
In this Note, we identify new compatibility conditions, expressed again in terms of the functions aαβ and bαβ , that likewise lead

to a similar existence and uniqueness theorem. These conditions take the form

∂1A2 − ∂2A1 + A1A2 − A2A1 = 0 in ω,

where A1 and A2 are antisymmetric matrix fields of order three that are functions of the fields (aαβ) and (bαβ), the field (aαβ)

appearing in particular through its square root. The unknown immersion θ :ω → R
3 is found in the present approach in function

spaces ‘with little regularity’, viz., W
2,p
loc (ω;R

3), p > 2. To cite this article: P.G. Ciarlet et al., C. R. Acad. Sci. Paris, Ser. I 345
(2007).
© 2007 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Résumé

De nouvelles conditions de compatibilité pour le théorème fondamental de la théorie des surfaces. Le théorème fondamental
de la théorie des surfaces affirme classiquement que, si un champ de matrices (aαβ) symétriques définies positives d’ordre deux
et un champ de matrices (bαβ) symétriques d’ordre deux satisfont ensemble les équations de Gauss et Codazzi–Mainardi dans un

ouvert ω ⊂ R2 connexe et simplement connexe, alors il existe une immersion θ :ω → R3 telle que ces deux champs soient les
première et deuxième formes fondamentales de la surface θ(ω), et cette surface est unique aux isométries propres de R

3 près.
Dans cette Note, nous identifions de nouvelles conditions de compatibilité, exprimées à nouveau à l’aide des fonctions aαβ et

bαβ , qui conduisent aussi à un théorème analogue d’existence et d’unicité. Ces conditions sont de la forme

∂1A2 − ∂2A1 + A1A2 − A2A1 = 0 dans ω,

où A1 et A2 sont des champs de matrices antisymétriques d’ordre trois, qui sont des fonctions des champs (aαβ) et (bαβ), le champ

(aαβ) apparaissant en particulier par l’intermédiaire de sa racine carrée. L’immersion inconnue θ :ω → R3 est trouvée dans cette
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approche dans des espaces fonctionnelles « de faible régularité », à savoir W
2,p
loc (ω;R

3), p > 2. Pour citer cet article : P.G. Ciarlet
et al., C. R. Acad. Sci. Paris, Ser. I 345 (2007).
© 2007 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. The fundamental theorem of surface theory: Classical formulation and recent extensions

To begin with, we list various conventions, notations, and definitions. Greek indices and exponents range in the set
{1,2} and the summation convention with respect to repeated indices or exponents is used in conjunction with this
rule.

All matrices considered in this paper are real. The notations M
n,M

n+,S
n,S

n
>,A

n, and O
n+ respectively designate

the sets of all square matrices of order n, of all matrices F ∈ M
n with det F > 0, of all symmetric matrices, of all

positive-definite symmetric matrices, of all antisymmetric matrices, and of all proper orthogonal matrices, of order n.
Given a matrix A ∈ M

n, [A]j denotes its j -th column vector. The Euclidean norm of a ∈ R
n, the Euclidean inner-

product of a,b ∈ R
n, and the vector product of a,b ∈ R

n are respectively denoted |a|, a · b, and a ∧ b.
Given any matrix C ∈ S

n
>, there exists one and only one matrix U ∈ S

n
> such that U2 = C. The matrix U, which is

then denoted C1/2, is the square root of C. Any invertible matrix F ∈ M
n+ admits a unique polar factorization F = RU,

as a product of a matrix R ∈ O
n+ by a matrix U ∈ S

n
>, with U = (FTF)1/2 and R = FU−1.

The coordinates of a point y ∈ R
2 are denoted yα and partial derivatives of the first and second order, in the usual

sense or in the sense of distributions, are denoted ∂α := ∂/∂yα and ∂αβ := ∂2/∂yα∂yβ .
Let ω be an open subset of R

2 and let θ ∈ C3(ω;R
3) be an immersion. Let

aαβ := ∂αθ · ∂βθ ∈ C2(ω) and bαβ := ∂αβθ · ∂1θ ∧ ∂2θ

|∂1θ ∧ ∂2θ | ∈ C1(ω)

denote the components of the first and second fundamental forms of the surface θ(ω), and let

Γαβτ := 1

2
(∂βaατ + ∂αaβτ − ∂τ aαβ),

(
aστ

) := (aαβ)−1, and Γ σ
αβ := aστΓαβτ .

Then it is well known that the functions aαβ and bαβ necessarily satisfy compatibility conditions, which take the form
of the Gauss and Codazzi–Mainardi equations, viz.,

∂βΓαστ − ∂σ Γαβτ + Γ
μ
αβΓστμ − Γ μ

ασ Γβτμ = bασ bβτ − bαβbστ in ω,

∂βbασ − ∂σ bαβ + Γ μ
ασ bβμ − Γ

μ
αβbσμ = 0 in ω.

The Gauss equations reduce to only one equation (corresponding, e.g., to α = 1, β = 2, σ = 1, τ = 2) and the
Codazzi–Mainardi equations reduce to only two equations (corresponding, e.g., to α = 1, β = 2, σ = 1 and α = 1,
β = 2, σ = 2).

It is also well known that, if a field of positive-definite symmetric matrices (aαβ) ∈ C2(ω;S
2
>) and a field of

symmetric matrices (bαβ) ∈ C1(ω;S
2) verify the Gauss and Codazzi–Mainardi equations and if the set ω is simply-

connected, then conversely, there exists an immersion θ ∈ C3(ω;R3) such that (aαβ) and (bαβ) are the first and second
fundamental forms of the surface θ(ω). If the set ω is in addition connected, then such an immersion is uniquely defined
up to proper isometries of R

3.
These existence and uniqueness results constitute together the fundamental theorem of surface theory, which goes

back to Janet [8] and Cartan [1] (for a self-contained, and essentially elementary, proof, see [5] or [2, Chapter 2]). Its
regularity assumptions have since then been significantly weakened: First, Hartman & Wintner [7] have shown that
this theorem still holds if the fields (aαβ) and (bαβ) are only of class C1 and C0, with a resulting immersion in the space
C2(ω;R3). Then S. Mardare further relaxed these assumptions, first in [9] to fields (aαβ) and (bαβ) of class W

1,∞
loc and

L∞
loc, then in [10] to fields (aαβ) and (bαβ) of class W

1,p

loc and L
p

loc for some p > 2, with resulting immersions in the

spaces W
2,∞
loc (ω;R

3) and W
2,p

loc (ω;R
3), respectively. Naturally, the Gauss and Codazzi–Mainardi relations are only

satisfied in the sense of distributions in such cases.
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2. New compatibility conditions satisfied by the two fundamental forms of a surface

Our objective is to identify new compatibility conditions satisfied by the first and second fundamental forms of a
surface θ(ω) that share the same properties: They are necessary (Theorem 2.1) and they are sufficient for the existence
of the immersion θ :ω → R

3 if ω is simply-connected (Theorem 3.1).

Theorem 2.1. Let ω be an open subset of R
2, let p > 2, and let θ ∈ W

2,p

loc (ω;R
3) be an immersion. Define the vector

fields ai ∈ W
1,p

loc (ω;R
3), 1 � i � 3, and the matrix fields (aαβ) ∈ W

1,p

loc (ω;S
2
>) and (bαβ) ∈ L

p

loc(ω;S
2) by

aα := ∂αθ and a3 := a1 ∧ a2

|a1 ∧ a2| , aαβ := aα · aβ and bαβ := ∂αaβ · a3.

Define also the matrix fields (aστ ) ∈ W
1,p

loc (ω;S
2
>) and the functions Γαβτ ∈ L

p

loc(ω), Γ σ
αβ ∈ L

p

loc(ω), and bσ
α ∈ L

p

loc(ω)

by (
aστ

) := (aαβ)−1, Γαβτ := 1

2
(∂βaατ + ∂αaβτ − ∂τ aαβ), Γ σ

αβ := aστΓαβτ , bσ
α := aβσ bαβ.

Finally, define the matrix fields �α ∈ L
p

loc(ω;M
3), C ∈ W

1,p

loc (ω;S
3
>), U ∈ W

1,p

loc (ω;S
3
>), and Aα ∈ L

p

loc(ω;M
3) by

�α :=
⎛
⎝Γ 1

α1 Γ 1
α2 −b1

α

Γ 2
α1 Γ 2

α2 −b2
α

bα1 bα2 0

⎞
⎠ , C :=

(
a11 a12 0
a21 a22 0
0 0 1

)
,

U := C1/2, Aα := (U�α − ∂αU)U−1.

Then the matrix fields Aα are antisymmetric and they necessarily satisfy the following compatibility conditions:

∂1A2 − ∂2A1 + A1A2 − A2A1 = 0 in D′(ω;A
3).

Sketch of proof. (i) Technical preliminaries. These preliminaries consist in showing that the following regularities
and equations hold:

a3 ∈ W
1,p

loc

(
ω;R

3) and
(
aστ

) ∈ W
1,p

loc

(
ω;S

2
>

)
, U ∈ W

1,p

loc

(
ω;S

3
>

)
and U−1 ∈ W

1,p

loc

(
ω;S

3
>

)
,

∂αaβ = Γ σ
αβaσ + bαβa3 and ∂αa3 = −bσ

α aσ in L
p

loc

(
ω;R

3)
(of course, the last relations are nothing but the extensions of the classical formulas of Gauss and Weingarten to
function spaces with little regularity).

(ii) Introduction of the antisymmetric matrix fields Aα . One proves that the matrix field F ∈ W
1,p

loc (ω;M
3+) defined

by [F]j := aj , 1 � j � 3, satisfies

C = FTF in W
1,p

loc

(
ω;S

3
>

)
, ∂αF = F�α in L

p

loc

(
ω;M

3), and F(y) ∈ M
3+ for all y ∈ ω

(the second relation is simply a re-writing in matrix form of the formulas of Gauss and Weingarten; this observation
is due to S. Mardare [9]).

At each point y ∈ ω, let F(y) = R(y)U(y) denote the polar factorization of the matrix F(y) ∈ M
3+. Then R ∈

W
1,p

loc (ω;O
3+) and

∂αR = RAα in L
p

loc

(
ω;M

3) where Aα := (U�α − ∂αU)U−1 ∈ L
p

loc

(
ω;M

3).
The relations I = RTR and ∂αR = RAα then imply that 0 = (∂αR)TR+RT∂αR = AT

α +Aα in ω. Therefore the matrix
fields Aα are antisymmetric.

(iii) Compatibility conditions satisfied by the matrix fields Aα . The relations ∂αR = RAα in L
p

loc(ω;M3) satisfied

by the matrix fields R ∈ W
1,p

loc (ω;O
3+) and Aα ∈ L

p

loc(ω;A
3) found in part (ii) imply that

∂βαR = (∂βR)Aα + R∂βAα = RAβAα + R∂βAα in D′(ω;M
3),

∂αβR = (∂αR)Aβ + R∂αAβ = RAαAβ + R∂αAβ in D′(ω;M
3)
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(the products RAβAα are well-defined distributions, since AβAα ∈ L
p/2
loc (ω;M

3)). Hence the relations ∂βαR = ∂αβR
imply that

R∂αAβ − R∂βAα + RAαAβ − RAβAα = 0 in D′(ω;M
3).

Thanks to a series of relations valid in the sense of distributions, it is then shown that the invertibility of the matrices
R(y) at all y ∈ ω in turn implies that

∂αAβ − ∂βAα + AαAβ − AβAα = 0 in D′(ω;A
3).

In order that these relations hold for all α,β ∈ {1,2}, it clearly suffices that the relation corresponding to α = 1 and
β = 2 holds. �

Like the Gauss and Codazzi–Mainardi equations, the compatibility conditions found in Theorem 2.1 as necessary
conditions reduce to only three scalar relations, since the matrix fields Aα are antisymmetric.

A different set of necessary compatibility equations, also related to a rotation field on a surface, has been proposed
by Vallée and Fortuné [13].

3. Sufficiency of the compatibility conditions

We next show that, if the open set ω ⊂ R
2 is simply-connected, the compatibility conditions that were found to be

necessary in Theorem 2.1 are also sufficient.

Theorem 3.1. Let ω be a connected and simply-connected open subset of R
2 and let p > 2. Let there be given two

matrix fields (aαβ) ∈ W
1,p

loc (ω;S
2
>) and (bαβ) ∈ L

p

loc(ω;S
2) that satisfy

∂1A2 − ∂2A1 + A1A2 − A2A1 = 0 in D′(ω;A
3),

where the matrix fields Aα ∈ L
p

loc(ω;A
3) are constructed from the matrix fields (aαβ) and (bαβ) by means of the

following sequence of definitions:

Γαβτ := 1

2
(∂βaατ + ∂αaβτ − ∂τ aαβ) ∈ L

p

loc(ω),
(
aστ

) := (aαβ)−1 ∈ L
p

loc

(
ω;S

2
>

)
,

Γ σ
αβ := aστΓαβτ ∈ L

p

loc(ω), bσ
α := aβσ bαβ ∈ L

p

loc(ω),

�α :=
⎛
⎝Γ 1

α1 Γ 1
α2 −b1

α

Γ 2
α1 Γ 2

α2 −b2
α

bα1 bα2 0

⎞
⎠ ∈ L

p

loc

(
ω;M

3), C :=
(

a11 a12 0
a21 a22 0
0 0 1

)
∈ W

1,p

loc

(
ω;S

3
>

)
,

U := C1/2 ∈ W
1,p

loc

(
ω;S

3
>

)
, Aα := (U�α − ∂αU)U−1 ∈ L

p

loc

(
ω;A

3).
Then there exists an immersion θ ∈ W

2,p

loc (ω;R
3) such that

aαβ = ∂αθ · ∂βθ in W
1,p

loc (ω) and bαβ = ∂αβθ · ∂1θ ∧ ∂2θ

|∂1θ ∧ ∂2θ | in L
p

loc(ω).

If any other immersion θ̃ ∈ W
2,p

loc (ω;R
3) satisfies the above relations (with θ̃ in lieu of θ ), then there exist a vector

c ∈ R
3 and a matrix Q ∈ O

3+ such that θ̃(y) = c + Qθ(y) for all y ∈ ω.

Sketch of proof. (i) The matrix fields Aα = (U�α − ∂αU)U−1 are antisymmetric. This property is established by a
direct computation, based on the definitions of the functions Γαβτ , aστ , Γ σ

αβ , bσ
α and of the matrix fields �α and C.

(ii) Let there be given a point y0 ∈ ω and a matrix R0 ∈ O
3+. Then there exists one and only one matrix field R ∈

W
1,p

loc (ω;O
3+) that satisfies ∂αR = RAα in L

p

loc(ω;M
3) and R(y0) = R0. Since the matrix fields Aα satisfy ∂αAβ −

∂βAα + AαAβ − AβAα = 0 in D′(ω;A
3), a key existence and uniqueness result of S. Mardare [10, Theorem 7] for

linear differential systems with little regularity provides the existence and uniqueness of a solution R ∈ W
1,p

(ω;M3).
loc
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In order to show that this matrix field R is proper orthogonal, we note that the matrix field RTR ∈ W
1,p

loc (ω,M
3)

satisfies

∂α

(
RTR

) = (∂αR)TR + RT∂αR = AT
α

(
RTR

) + (
RTR

)
Aα in L

p

loc

(
ω;M

3) and
(
RTR

)
(y0) = I.

That RTR = I is the unique solution to this system is deduced from the uniqueness result of S. Mardare [11, Theo-
rem 4.2]. It then follows that det R(y) = det R0 = 1 for all y ∈ ω since ω is connected.

(iii) The matrix field R ∈ W
1,p

loc (ω;O
3+) being that determined in (ii), there exists an immersion θ ∈ W

2,p

loc (ω,R
3)

that satisfies ∂αθ = Ruα in W
1,p

loc (ω;R3), where uα := [U]α ∈ W
1,p

loc (ω;R3). Resorting this time to the “Poincaré
lemma with little regularity” established in [10, Theorem 8], we conclude that this system has a solution θ ∈
W

1,p

loc (ω;R
3) because the compatibility relations ∂β(Ruα) = ∂α(Ruβ) in L

p

loc(ω;R
3) are satisfied (these relations

themselves follow from the relations ∂αR = RAα found in part (ii) combined with appropriate computations). Since
the fields R and uα are respectively in the spaces W

1,p

loc (ω;O
3+) and W

1,p

loc (ω;R
3), it follows that θ ∈ W

2,p

loc (ω;R
3).

Since the vectors uα(y) are linearly independent and the matrix R(y) is proper orthogonal at all points y ∈ ω, it further
follows that θ is an immersion.

(iv) The given matrix fields (aαβ) ∈ W
1,p

loc (ω;S2
>) and (bαβ) ∈ L

p

loc(ω;S2) are the first and second fundamental

forms of the surface θ(ω). Define the matrix and vector fields F := RU ∈ W
1,p

loc (ω;M
3) and fj := [F]j ∈ W

1,p

loc (ω;R
3),

1 � j � 3, where R ∈ W
1,p

loc (ω;O
3+) is the matrix field found in (ii), U = C1/2 ∈ W

1,p

loc (ω;S
3
>), and the matrix field C

is defined in terms of the functions aαβ as in the statement of the theorem. Then the conclusions follow from a series
of computations, based on the relation FTF = C, the specific form of the matrix field C, and the relations F = RU and
fα = ∂αθ = Ruα .

(v) The uniqueness of the immersion θ ∈ W
1,p

loc (ω;R
3) up to proper isometries follows from the rigidity theorem

with little regularity established in [6, Theorem 3]. �
By contrast with the above proof, the proof in the ‘classical’ approach (once properly extended to spaces with

little regularity; cf. S. Mardare [10]) first seeks a matrix field F ∈ W
1,p

loc (ω;M
3) as a solution of the Pfaff system

∂αF = F�α , then the sought immersion θ ∈ W
2,p

loc (ω;R
3) as a solution to the system ∂αθ = fα , where fα denotes the

α-th column vector field of the matrix field F.
An inspection of the proof reveals the geometric nature of this approach: Let the canonical three-dimensional

extension � : ω × R → R
3 of an immersion θ ∈ W

2,p

loc (ω;R
3) be defined by �(y, x3) = θ(y) + x3a3(y), for all y ∈ ω

and x3 ∈ R, and let the matrix field F ∈ W
1,p

loc (ω;M
3) be defined by F(y) = ∇�(y,0). Then the fields R and U satisfy

F = RU in W
1,p

loc (ω;M
3). In other words, the proper orthogonal matrix field R is nothing but the rotation field that

appears in the polar factorization of the gradient of the canonical three-dimensional extension � of the immersion θ

at x3 = 0.
The above compatibility conditions are in a sense the “surface analogs” of similar “three-dimensional” compatibil-

ity conditions satisfied in an open subset Ω of R
3 by the square root of the metric tensor field ∇�T∇� ∈ C2(Ω;S

3
>)

associated with a given immersion � ∈ C3(Ω;R
3). These three-dimensional conditions, which were first identified

(in componentwise form) by Shield [12], have been recently shown to be also sufficient for the existence of such an
immersion � when the set Ω is simply connected, also in function spaces with little regularity; cf. [4].

As expected, one can also show that the above new compatibility conditions are equivalent to the Gauss and
Codazzi–Mainardi equations.

Complete proofs of all the results announced in this Note are found in [3].
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