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Abstract

We propose in this Note an extension of Besag’s auto-models to exponential families with multi-dimensional parameters. This
extension is necessary for the treatment of spatial models like the ones with Beta conditional distributions. A family of cooperative
auto-models is proposed. To cite this article: C. Hardouin, J.-F. Yao, C. R. Acad. Sci. Paris, Ser. I 345 (2007).
© 2007 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Résumé

Auto-modèles à paramètres multiples et applications aux systèmes coopératifs. Nous proposons dans ce travail une exten-
sion des auto-modèles de Besag aux familles exponentielles de paramètres multiples. Cette extension est nécessaire dans plusieurs
applications comme la construction des modèles coopératifs dont les lois conditionnelles sont des lois Beta. Pour citer cet ar-
ticle : C. Hardouin, J.-F. Yao, C. R. Acad. Sci. Paris, Ser. I 345 (2007).
© 2007 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

Let us consider a random field X = {Xi, i ∈ S} on a finite set of sites S = {1, . . . , n}. For a site i, let us denote
pi(xi |·) = pi(xi |xj , j �= i), the conditional density function of Xi given the event {Xj = xj , j �= i}. An important
approach in stochastic modelling consists in specifying the family of all these conditional distributions {pi(xi |·)}, and
then to determine a joint distribution P of the system, which is compatible with this family, i.e. the pi ’s are exactly
the conditional distributions associated to P (see [1] in a general framework).

In this Note, we focus on auto-models introduced by J. Besag [2]. These auto-models are constructed under two
assumptions: first, the dependence between sites is pairwise and secondly, the collection of conditional distributions
from the sites belongs to a one-parameter exponential family. More precisely, the exponential family can involve more
than one parameter, but the sufficient statistic as well as the canonical parameter are one-dimensional. For instance,
in the Gaussian auto-model, the conditional mean at each site i depends on the neighbours of i while the conditional

E-mail addresses: Cecile.Hardouin@univ-paris1.fr (C. Hardouin), jian-feng.yao@univ-rennes1.fr (J.-F. Yao).
1631-073X/$ – see front matter © 2007 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.
doi:10.1016/j.crma.2007.07.019



350 C. Hardouin, J.-F. Yao / C. R. Acad. Sci. Paris, Ser. I 345 (2007) 349–352
variance is constant or depends only of i. We propose in this work an extension to exponential families involving a
multi-dimensional parameter. As an application of this general approach, we address the particular problem of building
cooperative spatial models. We consider for instance a class of Beta conditionals, which has the advantage to be able
to exhibit spatial cooperation as well as spatial competition according to a suitable choice of its parameter values.

Moreover, to assess the quality of the pseudo likelihood estimator, we also present an exploratory simulation study
in case of auto-models with Beta conditional distributions.

2. Multi-parameter auto-models

Let us consider a set of sites S = {1, . . . , n}, a measurable state space (E,E,m) (usually a subset of R
d ). We

let the configuration space Ω = ES be equipped with the σ -algebra and the product measure (E⊗S, ν := m⊗S). For
simplicity, we shall consider Ω = ES, but all the following results hold equally with a more general configuration
space Ω = ∏

i∈S Ei , where each individual space (Ei,Ei ) is equipped with some measure mi .
A random field is specified by a probability distribution μ on Ω , and we will assume throughout the paper the

positivity condition: namely, μ has an everywhere positive density P with respect to ν i.e. μ(dx) = P(x)ν(dx),
P(x) = Z−1 expQ(x), where Z is a normalization constant. If we consider a Markov random field equipped with a
neighbouring graph, the Hammersley–Clifford’s Theorem gives a characterization of Q(x) as a sum of potentials G

deduced from a set of cliques [2]. The basic assumptions of the present setting are the following:

[B1] The dependence between the sites is pairwise-only,

Q(x) =
∑
i∈S

Gi(xi) +
∑
{i,j}

Gij (xi, xj ).

[B2] For all i ∈ S, logpi(xi |·) = 〈Ai(·),Bi(xi)〉 + Ci(xi) + Di(·), Ai(·) ∈ R
d , Bi(xi) ∈ R

d .

We fix a reference configuration τ = (τi) ∈ Ω . The potential functions are fully identified if we assume that, for
all i, j and x it happens that Gij (τi, xj ) = Gij (xi, τj ) = Gi(τi) = 0. The main result of the paper is the following
theorem:

Theorem 2.1. Let us assume that the two conditions [B1]–[B2] are satisfied with the normalization Bi(τi) =
Ci(τi) = 0 in [B2], as well as the following condition

[C] for all i ∈ S, Span
{
Bi(xi), xi ∈ E

} = R
d .

Then there exists for i, j ∈ S, i �= j , a family of d-dimensional vectors {αi} and a family of d × d matrices {βij }
satisfying βT

ij = βji , such that

Ai(·) = αi +
∑
j �=i

βijBj (xj ). (1)

Also, the potentials are given by

Gi(xi) = 〈αi,Bi(xi)〉 + Ci(xi), (2)

Gij (xi, xj ) = BT
i (xi)βijBj (xj ). (3)

A model satisfying the assumptions of the theorem is called a multi-parameter auto-model. Therefore, Theorem 2.1
determines the necessary form of local canonical parameters {Ai(·)} which allow the conditional specifications to
‘reconstruct’ together a joint distribution.

The following proposition is useful, giving a converse to the previous theorem. It also provides a practical way to
choose the parameters for a well-defined multi-parameter auto-model. Indeed, the only additional condition one must
check in practice is that the energy function Q is admissible in the sense that

∫
eQ(x)ν(dx) < ∞.
Ω
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Corollary 2.2. Assume that the energy function Q defined by [B1] with potentials Gi,Gij given in (2), (3) is admissi-
ble. Assume that the family of conditional distributions pi(xi |·) belong to an exponential family of type [B2] satisfying
[C] and (1). Then, those conditional distributions are the conditional distributions of a Markov random field whose
energy is Q.

3. A special class of auto-models with Beta conditionals

Several common one-parameter auto-models necessarily imply spatial competition between neighbouring sites.
For instance, this is the case for the auto-exponential and auto-Poisson schemes. This competition behaviour is clearly
inadequate for many spatial systems (see [2]). By using Beta conditional distributions, we get interesting solution to
this problem. Note that the advantages of such auto-models have been already certified in a previous work (see [6]).

Let us write the density of a Beta distribution on [0,1] with parameters p,q > 0 as

fθ (x) = κ(p,q)xp−1(1 − x)q−1 = exp
{〈

θ,B(x)
〉 − ψ(θ)

}
, 0 < x < 1,

with θ = (p − 1, q − 1)T , B(x) = [log(2x), log(2(1 − x))]T and ψ(θ) = (p + q − 2) log 2 + logκ(p,q). We recall
that κ(p,q) = �(p + q)/[�(p)�(q)]. Here the reference state is τ = 1

2 ensuring B(τ) = 0.
We now consider a random field X on S = {1,2, . . . , n} with such Beta conditional distributions. Clearly, Con-

dition [C] is satisfied. From Theorem 2.1, there exists for i, j ∈ S and i �= j some vectors αi = (ai, bi)
T ∈ R

2 and

(2 × 2)-matrices βij = ( cij dij

d∗
ij eij

)
verifying βij = βT

ji , such that

Ai(·) = αi +
∑
j �=i

βijB(xj ) = αi +
∑
j �=i

βij

(
log(2xj )

log(2(1 − xj ))

)
.

The energy function Q can be written as

Q(x1, . . . , xn) =
∑
i∈S

〈
αi,B(xi)

〉 + ∑
{i,j}

B(xi)
T βijB(xj ).

Finally the reference configuration is τ = ( 1
2 , . . . , 1

2 ) satisfying Q(τ) = 0. Let the conditions

[T1] (i) for all {i, j}, cij , dij , d∗
ij and eij are all nonpositive;

(ii) for all i, 1 + ai + (log 2)
∑

j �=i{cij + d∗
ij } > 0 and 1 + bi + (log 2)

∑
j �=i{d∗

ij + eij } > 0.

Proposition 3.1. Under Conditions [T1], the family of Beta conditional distributions {pi(xi |·), i ∈ S} is everywhere
well-defined, they reconstruct a joint distribution characterized by the energy function Q that is admissible.

3.1. Spatial cooperation versus spatial competition

We now examine the spatial competition or cooperation behaviour of this model. At each site i, the mean of
the conditional distribution pi(xi |·) is E(Xi |·) = 1+Ai,1(·)

2+Ai,1(·)+Ai,2(·) . This conditional mean increases with Ai,1(·) and
decreases with Ai,2(·). Besides the model is spatially cooperative if at each i the above conditional mean increases
with each neighbouring value xj , j �= i. This is possible by requiring for all i, j , cij = eij = 0.

Alternatively, if we adopt the constraints dij = d∗
ij = 0 for all pairs i �= j , the above conditional mean becomes a

decreasing function on any of its neighbouring value xj . There is then a spatial competition between neighbouring
sites.

3.2. Estimation for a Beta cooperative model

Let us consider the four-nearest-neighbours system on a two-dimensional torus lattice S = [1,M] × [1,N]: each
site i ∈ S has the four neighbours denoted as {ie = i + (1,0), iw = i − (1,0), in = i + (0,1), is = i − (0,1)} (with ob-
vious correction on the boundary). We assume spatial symmetry which implies dij = d∗ but allow possible anisotropy
ij



352 C. Hardouin, J.-F. Yao / C. R. Acad. Sci. Paris, Ser. I 345 (2007) 349–352
Table 1
Mean and standard deviation of the pseudo-likelihood estimates

Parameter a b d1 d2

True values 16.6 18.9 −4.5 −4.5
Mean 16.6004 19.0062 −4.4725 −4.5093
(st. deviation) (0.5847) (0.5872) (0.2742) (0.3153)

between the horizontal and vertical directions. The system is also required to be spatially cooperative and stationary.
Then the model involves 4 parameters (a, b, d1, d2). The conditions [T1] become

d1 � 0, d2 � 0; 1 + a + 2(d1 + d2) log 2 > 0; 1 + b + 2(d1 + d2) log 2 > 0. (4)

The associated local conditional distributions at each site i are Beta-distributed with canonical parameters

Ai(·) =
(

a + d1[log(2(1 − xie )) + log(2(1 − xiw ))] + d2[log(2(1 − xin)) + log(2(1 − xis ))]
b + d1[log(2xie ) + log(2xiw )] + d2[log(2xin) + log(2xis )]

)
. (5)

If we denote by φ the vector of all model parameters, the pseudo-likelihood is defined as L(x;φ) = ∏
i∈S pi(xi |xj ,

j �= i, φ).

We refer to e.g. [5,3] and [4] for theoretical results on the pseudo-likelihood estimator in the general framework of
a Markov random field. We propose here to assess its performance on the basis of simulation experiments.

We consider the auto-model (5) and run 600 scans of the Gibbs sampler for each simulation on a square lattice
of size 64 × 64. The mean and the standard deviation of the pseudo-likelihood estimates are computed from 100
independent simulations. Table 1 supports favorably the consistency of the pseudo-likelihood estimation in the present
situation.
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