Statistics

CLT and \mathbb{L}^{q} errors in nonparametric functional regression

Laurent Delsol
L.S.P., Université Paul-Sabatier, 31062 Toulouse, France
Received 15 November 2006; accepted after revision 23 July 2007
Available online 29 September 2007
Presented by Paul Deheuvels

Abstract

We study a nonparametric functional regression model and we provide an asymptotic law with explicit constants under α-mixing assumptions. Then we establish both pointwise confidence bands for the regression operator and asymptotic \mathbb{L}^{q} errors for its kernel estimator. To cite this article: L. Delsol, C. R. Acad. Sci. Paris, Ser. I 345 (2007).

© 2007 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Résumé

Loi et erreurs \mathbb{L}^{q} asymptotiques dans un modèle de régression non-paramétrique. On étudiera dans cet article la normalité asymptotique de l'estimateur à noyau pour des données α-mélangeantes fonctionnelles. L'explicitation des constantes apparaissant dans la loi asymptotique permet d'établir des intervalles de confiance ponctuels pour l'opérateur de régression ainsi que l'expression des erreurs \mathbb{L}^{q}. Pour citer cet article $:$ L. Delsol, C. R. Acad. Sci. Paris, Ser. I 345 (2007), © 2007 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

We focus on the usual regression model: $Y=r(X)+\epsilon$, where Y is a real random variable and X a random variable which takes values on a semi-metric space (E, d). Only regularity assumptions are made on r that is why the model is called nonparametric. Then, we consider a dataset of n pairs $\left(X_{i}, Y_{i}\right)$ identically distributed as (X, Y) which may be dependent.

One considers an element x of E and estimates $r(x)$ by the following kernel estimator:

$$
\hat{r}(x)=\frac{\sum_{i=1}^{n} Y_{i} K\left(\frac{d\left(X_{i}, x\right)}{h_{n}}\right)}{\sum_{i=1}^{n} K\left(\frac{d\left(X_{i}, x\right)}{h_{n}}\right)},
$$

where K is a kernel function and h_{n} a smoothing parameter. This estimator has been introduced by Ferraty and Vieu [3] to generalise to the functional case the classical Nadaraya-Watson estimator. The results on \mathbb{L}^{q} errors given below are new even in the independent and multivariate case.

[^0]
2. Notation and main assumptions

Firstly, we introduce some key-functions which take an important place in our approach:

$$
\phi(s)=\mathbb{E}[(r(X)-r(x)) \mid d(X, x)=s], \quad F(h)=\mathbb{P}(d(X, x) \leqslant h), \quad \tau_{h}(s)=\frac{F(h s)}{F(h)} .
$$

We start with some assumptions on the model (already introduced in [2]):
r is bounded on a neighbourhood of x,
$F(0)=0$ and $\phi^{\prime}(0)$ exists,
$\sigma_{\epsilon}^{2}(s):=\mathbb{E}\left[\epsilon^{2} \mid X=s\right]$ is continuous on a neighbourhood of x and $\sigma_{\epsilon}^{2}:=\sigma_{\epsilon}^{2}(x)>0$,
$\forall s \in[0 ; 1], \quad \lim _{n \rightarrow+\infty} \tau_{h_{n}}(s)=\tau_{0}(s) \quad$ with $\tau_{0}(s) \neq 1_{[0 ; 1]}(s)$.
Assumption (2) enables to get the exact expression of the constants where a standard Lipschitz condition would only give upper bounds. Then, one may note that assumptions dealing with the law of X only concern small ball probabilities. Besides, many standard processes fulfill assumption (4). In order to control the sum of covariances we propose the following assumptions:

$$
\begin{align*}
& \exists p>2, \exists M>0, \quad \mathbb{E}\left[|\epsilon|^{p} \mid X\right] \leqslant M \text { a.s., } \tag{5}\\
& \exists C, \forall i, j \in \mathbb{Z} \quad \max \left(\mathbb{E}\left[\left|\epsilon_{i} \epsilon_{j}\right| \mid X_{i}, X_{j}\right], \mathbb{E}\left[\left|\epsilon_{i}\right| \mid X_{i}, X_{j}\right]\right) \leqslant C \text { a.s. } \tag{6}
\end{align*}
$$

Finally we make some assumptions on the functional kernel estimator:

$$
\begin{equation*}
h_{n}=\mathrm{O}\left(\frac{1}{\sqrt{n F\left(h_{n}\right)}}\right), \quad \lim _{n \rightarrow+\infty} n F\left(h_{n}\right)=+\infty \tag{7}
\end{equation*}
$$

K has a compact support [0;1], is C^{1} and non-increasing on $] 0 ; 1[, K(1)>0$.
Our results will be expressed using the following constants:

$$
M_{0}=\left(K(1)-\int_{0}^{1}(s K(s))^{\prime} \tau_{0}(s) \mathrm{d} s\right), \quad M_{j}=\left(K^{j}(1)-\int_{0}^{1}\left(K^{j}\right)^{\prime}(s) \tau_{0}(s) \mathrm{d} s\right), \quad j=1,2,
$$

and the random variable Z_{n} defined with $B_{n}=h_{n} \phi^{\prime}(0) \frac{M_{0}}{M_{1}}$ by:

$$
Z_{n}:=\frac{M_{1}}{\sqrt{M_{2} \sigma_{\epsilon}^{2}}} \sqrt{n F\left(h_{n}\right)}\left(\hat{r}(x)-r(x)-B_{n}\right)
$$

If (X_{i}, Y_{i}) are dependent, we assume them to be α-mixing (see [7], p. 34, Notation 2.1). The mixing coefficients are denoted by $\{\alpha(n), n \in \mathbb{N}\}$ and we introduce the notations:

$$
\begin{gathered}
\forall k \geqslant 2, \quad \Theta_{k}(s):=\max \left(\max _{1 \leqslant i_{1}<\cdots<i_{k} \leqslant n} P\left(d\left(X_{i_{j}}, x\right) \leqslant s, 1 \leqslant j \leqslant k\right), F^{k}(s)\right), \\
\Gamma_{i}:=Y_{i} K\left(\frac{d\left(X_{i}, x\right)}{h_{n}}\right), \quad \Delta_{i}:=K\left(\frac{d\left(X_{i}, x\right)}{h_{n}}\right), \quad U_{i, n}=\frac{\Gamma_{i} \mathbb{E}\left[\Delta_{i}\right]-\Delta_{i} \mathbb{E}\left[\Gamma_{i}\right]}{F\left(h_{n}\right) \sqrt{n F\left(h_{n}\right)}} .
\end{gathered}
$$

We need the following assumptions:

$$
\begin{align*}
& \exists\left(u_{n}\right)_{n \in \mathbb{N}} \in \mathbb{N}^{\mathbb{N}}, \quad \mathrm{O}\left(\frac{n\left[\alpha\left(u_{n}\right)\right]^{\frac{p-2}{p}}}{F\left(h_{n}\right)^{\frac{p-2}{p}}}\right)+\mathrm{O}\left(u_{n} \frac{\Theta_{2}\left(h_{n}\right)}{F\left(h_{n}\right)}\right) \xrightarrow{n \rightarrow+\infty} 0, \tag{H1}\\
& \text { and } \quad I_{n}:=n \int_{0}^{1} \alpha^{-1}\left(\frac{s}{2}\right) Q_{U_{1, n}}^{2}(s) \inf \left(\frac{3 M_{1} \sqrt{\sigma_{\epsilon}^{2} M_{2}}}{2}, \alpha^{-1}\left(\frac{s}{2}\right) Q_{U_{1, n}}(s)\right) \mathrm{d} s \rightarrow 0, \quad \text { (see [6]) }
\end{align*}
$$

where $Q_{U_{i, n}}(x)=\inf \left\{t, \mathbb{P}\left(\left|U_{i, n}\right|>t\right) \geqslant x\right\}$, and $\alpha^{-1}\left(\frac{x}{2}\right)=\inf \left\{t, \alpha([t]) \geqslant \frac{x}{2}\right\}$. These assumptions will be simplified in the particular case of arithmetic α-mixing coefficients (see (9) and (10) below).

3. Asymptotic normality

Theorem 3.1. Under assumptions (1)-(8), (H1) and (H2) we get

$$
Z_{n} \rightarrow N(0,1)
$$

Remark. If the α-mixing coefficients are arithmetic of order a : $\alpha(i) \leqslant C i^{-a}$, assumptions (H1) and (H2) may be replaced, thanks to [4], by the following ones:

$$
\begin{align*}
& \exists v>0, \quad \Theta_{2}\left(h_{n}\right)=\mathrm{O}\left(F\left(h_{n}\right)^{1+v}\right), \quad \text { with } a>\frac{(1+v) p-2}{\nu(p-2)}, \tag{9}\\
& \exists \gamma>0, \quad n F^{1+\gamma}\left(h_{n}\right) \rightarrow+\infty \quad \text { and } \quad a>\frac{2}{\gamma}+1 . \tag{10}
\end{align*}
$$

4. Pointwise asymptotic confidence bands

To get asymptotic confidence bands one needs to estimate the constants appearing in Theorem 3.1. Whereas M_{1} and M_{2} seem to be easily estimated, the bias term is more difficult to study. To avoid this problem one makes an additional assumption on h_{n} which will make the bias negligible with respect to ${\sqrt{n F\left(h_{n}\right)}}^{-1}$. Taking

$$
\hat{M}_{2}(x):=\frac{1}{n \hat{F}\left(h_{n}\right)} \sum_{i=1}^{n} K^{2}\left(\frac{d\left(X_{i}, x\right)}{h_{n}}\right), \quad \hat{M}_{1}(x):=\frac{1}{n \hat{F}\left(h_{n}\right)} \sum_{i=1}^{n} K\left(\frac{d\left(X_{i}, x\right)}{h_{n}}\right)
$$

where $\hat{F}(t)=\frac{1}{n} \sum_{i=1}^{n} 1_{\left[d\left(X_{i}, x\right),+\infty[\right.}(t)$, we get the following corollary:
Corollary 4.1. Under assumptions of Theorem 3.1, if $h_{n} \sqrt{n F\left(h_{n}\right)} \rightarrow 0$, then:

$$
\frac{\hat{M}_{1}}{\sqrt{\hat{M}_{2} \hat{\sigma}_{\epsilon}^{2}}} \sqrt{n \hat{F}\left(h_{n}\right)}(\hat{r}(x)-r(x)) \rightarrow N(0,1),
$$

where $\hat{\sigma_{\epsilon}^{2}}$ is an estimator converging in probability to σ_{ϵ}^{2}.

5. Asymptotic expressions of \mathbb{L}^{q} errors

We get directly from the asymptotic law of Z_{n} and the uniform integrability of $\left|Z_{n}\right|^{q}$ the asymptotic expressions of the moments of order q and the \mathbb{L}^{q} errors of the kernel estimator. To get the uniform integrability of $\left|Z_{n}\right|^{q}$ we need additional assumptions:

$$
\begin{align*}
& \exists t, 2 \leqslant t<p, \forall k \leqslant t, \exists v_{k}>0, \quad \Theta_{k}(s)=\mathrm{O}\left(F(s)^{1+v_{k}}\right) \\
& \text { with } v_{k} \leqslant v_{k-1}+1 \text { and } a>\max _{2 \leqslant k \leqslant t}(k-1) \frac{\left(1+v_{k}\right) p-t}{v_{k}(p-t)}, \tag{11}
\end{align*}
$$

$$
\begin{equation*}
\exists u, 2 \leqslant u \leqslant p, \exists M, \quad \max _{i, n} \mathbb{E}\left[\left|\epsilon_{i}\right|^{u} \mid X_{1}, \ldots, X_{n}\right] \leqslant M \text { a.s. } \tag{12}
\end{equation*}
$$

From a statistical point of view, to choose the smoothing parameter, one often focuses on the \mathbb{L}^{q} errors of the kernel estimator. That is the aim of the following theorem in which we explicit their asymptotic dominant terms whether q is even or not. In particular the case q odd, leads us to introduce the two following sequences of polynomials: $P_{2 m+1}(u)=\sum_{l=0}^{m} a_{m, l} u^{2 l+1}$ and $Q_{2 m+1}(u)=\sum_{l=0}^{m} b_{m, l} u^{2 l}$, where

$$
\begin{aligned}
a_{m, l} & =\frac{(2 m+1)!}{(2 l+1)!2^{(m-l)}(m-l)!} \\
b_{m, l} & =\sum_{j=m-l+1}^{m}\left[C_{2 m+1}^{2 j+1} \frac{2^{j} j!}{2^{j+l-m}(j+l-m)!}-C_{2 m+1}^{2 j} \frac{(2 j)!2^{j+l-m}(j+l-m)!}{2^{j} j!(2(j+l-m))!}\right]+C_{2 m+1}^{2(m-l)+1} 2^{m-l}(m-l)!,
\end{aligned}
$$

and the function $\psi_{m}(u)=(2 G(u)-1) P_{2 m+1}(u)+2 g(u) Q_{2 m+1}(u)$ (with the convention that a sum on an empty set of indices equals zero).

Theorem 5.1. Under assumptions (1)-(8) and taking $\ell=p$ in the independent case or (1)-(12) and taking $\ell=2\left[\frac{\min (t, u)}{2}\right]$ in the arithmetic α-mixing case, one gets:
(i) $\forall 0 \leqslant q<\ell$,

$$
\mathbb{E}\left[|\hat{r}(x)-r(x)|^{q}\right]=\mathbb{E}\left[\left|h_{n} \phi^{\prime}(0) \frac{M_{0}}{M_{1}}+W \sqrt{\frac{M_{2} \sigma_{\epsilon}^{2}}{n F\left(h_{n}\right) M_{1}^{2}}}\right|^{q}\right]+\mathrm{o}\left(\frac{1}{\left(n F\left(h_{n}\right)\right)^{\frac{q}{2}}}\right),
$$

(ii) $\forall 0 \leqslant 2 m<\ell$,

$$
\mathbb{E}\left[|\hat{r}(x)-r(x)|^{2 m}\right]=\sum_{k=0}^{m} \frac{\left(\frac{M_{2} \sigma_{\epsilon}^{2}}{M_{1}^{2}}\right)^{k}\left(\frac{M_{0}}{M_{1}} \phi^{\prime}(0)\right)^{2(m-k)}(2 m)!}{(2(m-k))!k!2^{k}} \frac{h_{n}^{2(m-k)}}{\left(n F\left(h_{n}\right)\right)^{k}}+\mathrm{o}\left(\frac{1}{\left(n F\left(h_{n}\right)\right)^{m}}\right),
$$

(iii) $\forall 0 \leqslant 2 m+1<\ell$,

$$
\mathbb{E}\left[|\hat{r}(x)-r(x)|^{2 m+1}\right]=\left(\frac{M_{2} \sigma_{\epsilon}^{2}}{M_{1}^{2} n F\left(h_{n}\right)}\right)^{m+\frac{1}{2}} \psi_{m}\left(\frac{h_{n} \phi^{\prime}(0) M_{0} \sqrt{n F\left(h_{n}\right)}}{\sqrt{M_{2} \sigma_{\epsilon}^{2}}}\right)+\mathrm{o}\left(\frac{1}{\left(n F\left(h_{n}\right)\right)^{m+\frac{1}{2}}}\right) .
$$

6. Conclusions and perspectives

The above results complete [2] and [5] and give explicit constants in the asymptotic law and \mathbb{L}^{q} errors instead of giving only upper bounds. Consequently, they may be used to provide confidence bands or choose the smoothing parameter that is asymptotically optimal with regard to the \mathbb{L}^{q} error. Besides they generalise former works on the \mathbb{L}^{1} (see [8]) and \mathbb{L}^{2} errors with multivariate variables to the functional case and for other orders.

For the future, it would be of interest to get an 'integrated version' of asymptotic normality of $\hat{r}(x)$ notably to construct some specification testing procedures. It would also be interesting to get similar results for the integrated errors. Finally, we might attempt to extend our results to a more general case of α-mixing variables introduced in [1].

Acknowledgements

I would like to thank the referee for his constructive comments and suggestions to improve this Note. I am also grateful to the group STAPH with special thanks to F. Ferraty and P. Vieu.

References

[1] J. Dedecker, C. Prieur, New dependence coefficients. Examples and applications to statistics, Probab. Theory Related Fields 132 (2005) 203-236.
[2] F. Ferraty, A. Mas, P. Vieu, Advances on nonparametric regression for functional data, ANZ Journal of Statistics (2007), in press.
[3] F. Ferraty, P. Vieu, Nonparametric Functional Data Analysis, Springer-Verlag, New York, 2006.
[4] E. Liebscher, Central limit theorem for α-mixing triangular arrays with applications to nonparametric statistics, Mathematical Methods of Statistics 10 (2) (2001) 194-214.
[5] E. Masry, Nonparametric regression estimation for dependent functional data: asymptotic normality, Stochastic Process. Appl. 115 (1) (2005) 155-177.
[6] E. Rio, About the Lindeberg method for strongly mixing sequences, ESAIM 1 (1995) 35-61.
[7] E. Rio, Théorie asymptotique des processus aléatoires faiblement dépendants, Mathématiques et applications, vol. 31, Springer-Verlag, Berlin, 2000.
[8] M.P. Wand, On exact \mathbb{L}^{1} rates in nonparametric kernel regression, Scand. J. Statist. 17 (3) (1990) 251-256.

[^0]: E-mail address: delsol@cict.fr.

