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Abstract

It is well-known that for every σ > 1 the function t �→ ζ(σ + it)/ζ(σ ) represents the characteristic function of an infinitely divis-
ible probability distribution. The purpose of this Note is to present a construction of a stochastic process having these distributions
as its marginals. Functional limit theorems for this ‘zeta process’ and other related processes are also indicated. To cite this article:
W. Ehm, C. R. Acad. Sci. Paris, Ser. I 345 (2007).
© 2007 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Résumé

Un processus zeta stochastique de Riemann. Il est bien connu que pour tout σ > 1 la fonction t �→ ζ(σ + it)/ζ(σ ) représente
la fonction caractéristique d’une loi de probabilité infiniment divisible. L’objectif de cette Note est de présenter une construction
d’un processus aléatoire possédant ces lois marginales. Des théorèmes limite fonctionnels pour ce « processus zeta » et d’autres
processus voisins sont indiqués également. Pour citer cet article : W. Ehm, C. R. Acad. Sci. Paris, Ser. I 345 (2007).
© 2007 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

The Riemann zeta function can be defined in the half-plane �s = σ > 1 by the product (over all primes) ζ(s) =∏
p(1 − p−s)−1. This representation underlies the observation going back to Khintchine (1938) that for every σ > 1

the function ζσ (t) = ζ(σ + it)/ζ(σ ) is the characteristic function of an infinitely divisible probability distribution.
Indeed, ζσ (t) can be written as

ζ(σ + it)

ζ(σ )
=

∏
p

1 − p−σ

1 − p−σ−it
= exp

[∑
p

∞∑
n=1

p−σn

n

(
e−itn logp − 1

)]
, (1)

and thus be represented (for σ > 1) as a product of terms of the form exp(a(eibt − 1)), each of which is the character-
istic function of a Poisson random variable with intensity a and values in the lattice kb, k = 0,1,2, . . . . Cf. Gnedenko
and Kolmogorov [6, p. 75].

Faced with a family of ‘zeta distributions’ indexed by parameter σ > 1, one is led to ask for joint distributions, i.e.,
for a stochastic process with time parameter σ having these distributions as its marginals. Such a ‘zeta process’ was
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constructed by Alexander, Baclawski and Rota [1] for discrete time indices σ = 2,3, . . . . Our object here is to propose
an elementary construction of a continuous time zeta process. Of particular interest is, then, its limiting behavior as
σ ↓ 1.

Instead of expanding log(1 − p−σ−it ) in a Taylor series as in (1), we stay with the initial product representation
and note that each factor, (1 − p−σ )/(1 − p−σ−it ), represents the characteristic function of a random variable of the
form −Yp(p−σ ) logp, where Y(u) denotes a geometrically distributed random variable with parameter u ∈ (0,1),
P [Y(u) = n] = (1 − u)un (n = 0,1,2, . . .). Therefore, up to a convenient change of sign, a random variable Z(σ)

with characteristic function ζσ (t) can be represented in the form

Z(σ) =
∑
p

Yp

(
p−σ

)
logp, (2)

where the Yp(p−σ )s are independent and geometrically distributed with parameter p−σ . Our goal of constructing
a zeta process is thus reduced to the task of constructing a geometric process in a natural manner. Regarding rep-
resentation (2), note that the sum over the primes is almost surely a finite sum by the Borel–Cantelli lemma, since∑

p P [Yp(p−σ ) > 0] = ∑
p p−σ < ∞. Thus in view of the unique prime factorization of the natural numbers we

may write Z(σ) = logN(σ), where N(σ) = ∏
p pYp(p−σ ).

Various aspects of the (one-dimensional) zeta distribution including, e.g., the representation (2) as a linear combi-
nation of geometric random variables, were discussed in [8,4,7]. For a survey of probabilistic interpretations of the
zeta and other related functions and their connections with Brownian motion see Biane, Pitman and Yor [2].

2. The geometric process

Let U1,U2, . . . be independent and uniformly distributed on the unit interval. The geometric process Y(u), u ∈
[0,1), is then defined as follows,

Y(u) =
{

max{n � 1: U1 � u,U2 � u, . . . ,Un � u} if U1 � u,

0 if U1 > u.
(3)

We also could have set Y(u) = #{n � 1: Un � u} where Un = max{Uk, k � n}, so that Y is the inverse of the
maximum process n �→ Un. Evidently, Y(u) is geometrically distributed with parameter u for every u, and the sample
paths are non-decreasing and right continuous. Clearly also, the process is Markovian, with the following transition
probabilities. Let m � 0 be an integer and 0 � u < v < 1. Then

P
[
Y(v) = m | Y(u) = m

] = P [U1 � u, . . . ,Um � u,Um+1 > v]
P [U1 � u, . . . ,Um � u,Um+1 > u] = um(1 − v)

um(1 − u)
= 1 − v

1 − u
,

and for n � 1

P
[
Y(v) = m + n | Y(u) = m

]
= P [U1 � u, . . . ,Um � u, u < Um+1 � v,Um+2 � v, . . . ,Um+n � v,Um+n+1 > v]

P [U1 � u, . . . ,Um � u,Um+1 > u]
= um(v − u)vn−1(1 − v)

um(1 − u)
= (v − u)(1 − v)vn−1

1 − u
.

These probabilities do not depend on the state m, so Y has independent increments that are inhomogeneous in ‘time’,
however. The characteristic function of an increment is easily calculated as

E exp
[
it
(
Y(v) − Y(u)

)] = 1 − v

1 − veit

/
1 − u

1 − ueit
=: γu,v(t). (4)

Since the characteristic function of the geometric variable Y(u) is (1−u)/(1−ueit ) = γ0,u(t), (4) invites a telescoping
products representation, implying that the increments are infinitely divisible in the generalized sense that

γu0,un(t) =
n∏

γuk−1,uk
(t), 0 � u0 < u1 < · · · < un < 1. (5)
k=1
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The standard notion of infinite divisibility would require that γu,v(t) = γ0,v−u(t). Such homogeneity cannot be
achieved by a time change. In fact, the mean and variance of the increments are given by

E
(
Y(v) − Y(u)

) = v − u

(1 − u)(1 − v)
=

v∫
u

1

(1 − t)2
dt, (6)

Var
(
Y(v) − Y(u)

) = (v − u)(1 − uv)

(1 − u)2(1 − v)2
=

v∫
u

1 + t

(1 − t)3
dt, (7)

respectively, for 0 � u � v < 1. The non-linearity of the variance function, VarY(v) = v/(1−v)2, can be transformed
away: the substitution v ≡ v(t) = (1+2t − (1+4t)1/2)/(2t) gives VarY(v(t)) = t (t � 0). However, the expectations
EY(v(t)) = v(t)/(1−v(t)) = t (1−v(t)) remain non-linear in t , showing that the time homogeneity of the increments
required for infinite divisibility in the usual sense cannot be achieved.

3. The zeta process, and related functional limit theorems

Let Yp (p = 2,3,5, . . .) be independent geometric processes. Then the (Riemann) zeta (stochastic) process
(1,∞) 	 σ �→ Z(σ) is defined by (2), with the understanding that the arguments of the Yps now represent (trans-
formed) ‘time’ in addition to their rôle as parameter of a geometric distribution. Let us state its basic properties.

The zeta process inherits the independent increments, or, since transformed times p−σ run backwards, decrements
property from its component processes. The expectations are given by

EZ(σ) =
∑
p

(logp)p−σ /
(
1 − p−σ

) = −(log ζ )′(σ ).

Therefore, the process

σ �→ R(σ) = Z(σ) + (log ζ )′(σ ) =
∑
p

logp
(
Yp

(
p−σ

) − p−σ /
(
1 − p−σ

))

is a backward martingale w.r.t. the filtration G = {G(σ ), σ > 1}, where G(σ ) = ∨
p Fp(p−σ ) and Fp denotes the

filtration associated with Yp , Fp(v) = σ {Yp(u),0 � u � v}. By independence across ps the variance of R(σ) (or
Z(σ)) is

V (σ) := VarR(σ) =
∑
p

(logp)2p−σ /
(
1 − p−σ

)2 = (log ζ )′′(σ ).

The pole of the zeta function at σ = 1 implies that EZ(σ) and VarZ(σ) both diverge to infinity as σ ↓ 1.
To state the functional limit theorem for the zeta process it is convenient to reverse the ‘time’ direction to ‘forward’

by passing to new time parameters u ∈ [0,1] as follows. The function σ �→ V (σ) decreases strictly and continuously
on (1,∞), from V (1+) = ∞ to V (∞) = 0. Therefore, given any T > 0 there exists for every u ∈ (0,1] a uniquely
defined σT (u) > 1 such that V (σT (u)) = uT . In particular, V (σT (1)) = T , and it makes sense to define σT (0) = ∞,
so that σT (u) decreases from ∞ to σT (1) as u runs from 0 to 1. Moreover, σT (1) ↓ 1 as T ↑ ∞ (and vice versa).
Then, given any T > 0, let process ηT be defined by

ηT (u) = √
u + T −1/2R

(
σT (u)

)
(0 � u � 1).

Weak convergence of processes is understood in the space D of càdlàg functions on [0,1] endowed with the Skorokhod
topology.

Theorem 3.1. As T → ∞, the process ηT = {ηT (u),0 � u � 1} converges weakly to a process η = {η(u),0 � u � 1}
characterized by the following properties: (i) η has independent increments; (ii) for u ∈ [0,1], η(u) is exponentially
distributed with expectation

√
u, η(u) ∼ E(

√
u ). In particular, for u = 1 it follows that

(σ − 1) logN(σ) −→d E(1) as σ ↓ 1. (8)
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The nature of the ‘scaled exponentials’ process η becomes clear on noting that for any 0 � u < v � 1 the dis-
tribution of the increment η(v) − η(u) is a mixture of the point mass at zero and the distribution E(

√
v ), with

weights
√

u/v and 1 − √
u/v, respectively. In fact, independence of the increments of η implies, similarly as

at (5), a telescoping products representation of the characteristic function (1 − it
√

v )−1 of E(
√

v ). In particular,
E exp[it (η(v) − η(u))] = (1 − it

√
u)/(1 − it

√
v ), which quotient is readily identified as the characteristic function

of the above mixture distribution. The limit process thus mimics the structure of the geometric process.
Concerning the proof of Theorem 3.1 let us indicate the argument for the convergence in distribution of ηT (1) to

E(1). The limit distributions of ηT (u) for u < 1 then follow by a scaling argument. Tightness can be proved using
a suitable fluctuation inequality along with the independence of the increments. To ease the notation let us write
σT (1) = σ . Then, given T = V (σ) > 0 and b ∈ R let

Kσ (b) = T −1
∑
p

(logp)2EXp(σ)2χ
(
Xp(σ) � bT 1/2/ logp

)
where the random variables Xp(σ) = Yp(p−σ ) − p−σ /(1 − p−σ ) are independent across primes p, and χ(·) denotes
the indicator function of the event in brackets. By a theorem of Brown and Eagleson [3] it suffices to show that

lim
σ↓1

Kσ (b) = (
1 − e−b(1 + b)

)
+ =: K(b) (9)

for every b ∈ R and to note that
∞∫

0

(
eitx − 1 − itx

)
x−2 dK(x) =

∞∫
0

(
eitx − 1

)
x−1e−x dx − it = log

e−it

1 − it

is the log characteristic function of a standard exponentially distributed random variable minus 1. For the proof of (9)
one writes

Kσ (b) =
∞∑

n=0

[∑
p

(logp)2

T

1 − p−σ

pσn

(
n − p−σ

1 − p−σ

)2

χ

(
n − p−σ

1 − p−σ
� bT 1/2

logp

)]
≡

∞∑
n=0

An(σ, b)

and shows that as σ ↓ 1 one has (i)
∑

n�=1 An(σ, b) → 0 and (ii) A1(σ, b) → K(b), using the prime number theorem
for the second assertion.

Let us conclude by stating a related result that may be regarded as a strictly stochastic, functional version of
the classical Erdős–Kac theorem [5]. The number of prime factors of N(σ) = ∏

p pYp(p−σ ) counting multiplicities

is
∑

p Yp(p−σ ). Similarly as above, M(σ) = ∑
p(Yp(p−σ ) − p−σ

1−p−σ ), σ > 1, is a backward martingale (w.r.t. the

filtration G) with independent decrements and variance function V (σ) = ∑
p p−σ /(1 − p−σ )2. Given T > 0 and

u ∈ [0,1] let σT (u) > 1 be defined by the relation V (σT (u)) = uT , as above.

Theorem 3.2. Given T > 0, let WT (u) = T −1/2M(σT (u)) (0 � u � 1). Then as T → ∞, the process WT =
{WT (u), 0 � u � 1} converges weakly to standard Brownian motion.
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