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Abstract

In this Note we study robustness properties of the minimum Hellinger distance estimators (MHDE) for location and covariance
in the case of some multivariate distributions. We determine the general form of the influence function of the MHDE and establish
that, at the model, this is the same with the influence function of the maximum likelihood estimator. We also prove that, in the
hypothesis of a worst possible choice of contamination, the asymptotic breakdown point of the MHDE is larger than 1/2 at the
model. To cite this article: A. Toma, C. R. Acad. Sci. Paris, Ser. I 345 (2007).
© 2007 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Résumé

Estimateurs de distance Hellinger minimum pour quelques modèles multivariées : fonctions d’influence et le point de
rupture. Dans cette Note, nous étudions des propriétés de robustesse des estimateurs du minimum de la distance de Hellinger
(MHDE) pour location et covariance dans le cas de quelques modèles multivariées. Nous déterminons la forme générale de la
fonction d’influence du MHDE et établissons que, au modèle, elle est la même que la fonction d’influence de l’estimateur du
maximum de vraisemblance. Nous démontrons également que, dans l’hypothèse du choix de la contamination la plus mauvaise, le
point de rupture asymptotique du MHDE est superiéur à 1/2 au modèle. Pour citer cet article : A. Toma, C. R. Acad. Sci. Paris,
Ser. I 345 (2007).
© 2007 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Version française abrégée

Dans cette Note, nous étudions des propriétés de robustesse des estimateurs du minimum de la distance de Hellin-
ger (MHDE) pour location et covariance dans le cas de quelques modèles multivariées. Les distributions auxquelles
nous nous référons particulièrement sont des distributions elliptiquement symétriques et les distributions du système
multivariées de Johnson. En utilisant la fonction résiduelle d’ajustement (RAF) nous déterminons la forme géné-
rale de la fonction d’influence du MHDE et montrons que, au modèle, elle est la même avec la fonction d’influence
de l’estimateur du maximum de vraisemblance. Nous démontrons également que, dans l’hypothèse du choix de la
contamination la plus mauvaise, le point de rupture asymptotique du MHDE est superiéur à 1/2 au modèle.
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1. Introduction and notations

There are two fundamental properties in parametric estimation: the efficiency when the model is correctly chosen
and the robustness when the true distribution of the observations is in a neighborhood of the model, but not necessarily
in it. The popularity of the minimum Hellinger distance and related methods is due to the ability to combine these
two properties. Among others, Beran [3], Tamura and Boos [10], Simpson [8,9] have proved that the simultaneous
goals of efficiency and robustness can be achieved by using parametric procedures based on the Hellinger distance.
Lindsay [6] generalized this type of procedures, by using disparities instead of the Hellinger distance, generating
estimators that are both first order efficient and robust (see also Basu and Lindsay [1], Basu et al. [2], Park and
Basu [7], Broniatowski [4], Broniatowski and Keziou [5] for related methods).

In this Note we bring into discussion robustness properties of the minimum Hellinger distance estimators (MHDE)
for location and covariance in the case of some multivariate distributions. The distributions we specially refer are
elliptically symmetric distributions and the distributions from the multivariate Johnson system. For these distributions,
theoretical results concerning the existence, consistency, asymptotic normality, the empirical breakdown point of
the corresponding MHDE, as well as the practical importance of these estimators are demonstrated in Tamura and
Boos [10] and Toma [11]. Here we complete the robustness study of these MHDE by using the so called residual
adjustment function (RAF). We determine the general form of the influence function of the MHDE and establish that,
at the model, this equals to the influence function of the maximum likelihood estimator. We also prove that, in the
hypothesis of a worst possible choice of contamination, the asymptotic breakdown point of the MHDE is larger than
1/2 at the model.

Consider the parametric family {fθ : θ ∈ Θ = R
p × SPD(p)}, where SPD(p) is the set of all p × p symmetric and

positive definite matrices. Let X = (X1,X2, . . . ,Xn) be a random sample of p-vectors and let ĝn be a nonparametric
kernel density estimator computed from X. The MHDE based on X and ĝn is any value θ = (μ,V ) ∈ Θ defined by

θ̂n = (μ̂n, V̂n) = arg inf
θ∈Θ

dH (ĝn, fθ ) (1)

where dH (g,f ) = [∫ {g 1
2 (x) − f

1
2 (x)}2 dx] 1

2 is the Hellinger distance. The MHDE could be also obtained as

θ̂n = arg inf
θ∈Θ

φH (ĝn, fθ ) (2)

where φH is the twice squared Hellinger distance, namely φH (g,f ) = 2d2
H (g,f ). The function φH is known to be

a divergence and its use in this context enables us to obtain some results concerning the robustness properties of the
MHDE. Define the Pearson residual at a point x as δ(x) = ĝn(x)−fθ (x)

fθ (x)
. Then the Hellinger divergence between ĝn and

fθ could be written as φH (ĝn, fθ ) = ∫
C(δ)fθ where C(δ) = 2[(δ + 1)1/2 − 1]2 (we will sometime use the notation∫

f for
∫

f (x)dx whenever it is defined).
Next we specify some notations. For any p × p symmetric matrix A, let uvecA denote the p(p + 1)/2 dimen-

sional column vector formed from the elements in the upper triangular half of A, including the diagonal elements.
In order to use the gradient and to derive the influence function of the MHDE, we will identify the parameter θ with
(μt , (uvecV )t )t , where the superscript t denotes the transpose. For any real valued function f (x), let f ′(x) denote its
first derivative with respect to x. Let ∇ represent the gradient with respect to θ and let ∇2fθ (x) denotes the matrix
of second partial derivatives of fθ . Let s(x, θ) = ∇ logfθ (x) be the p + p(p + 1)/2 dimensional vector of likelihood
score function. Then Iθ = ∫

s(x, θ)s(x, θ)tfθ (x)dx is the Fisher information matrix.
Under some regularity conditions, the minimum Hellinger divergence estimating equation becomes

−∇φH =
∫

A(δ)∇fθ = 0 (3)

where A(δ) = (δ + 1)C′(δ) − C(δ). The function A(δ) is the so called residual adjustment function (RAF) of the di-
vergence introduced by Lindsay [6] and determine some specific properties of the estimator, for example how strongly
the effect of large probabilistic outliers (which manifest themselves as large positive values of δ) is downweighted. In
our case, the expression of the RAF is

A(δ) = 2
[
(δ + 1)1/2 − 1

]
. (4)
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Let G be the space of densities. Define the functional T : G → Θ corresponding to the MHDE estimator as T (g) =
(μ(g),V (g)) = arg infθ∈Θ φH (g,fθ ). Since T (fθ ) = θ for all θ ∈ Θ , the functional T is Fisher consistent. From the
definition (2) we observe that the MHDE has the functional form T (ĝn), where ĝn is the kernel density estimator
based on the data. For a given density g, T (g) is a solution of the equation having the structural form (3), with δ

obtained from the Pearson residual by replacing ĝn with g. More precisely, the estimating equation for T (g) is∫
A

(
g(y) − fT (g)(y)

fT (g)(y)

)
∇fT (g)(y)dy = 0. (5)

This implicit equation defining T (g) will be proved to be useful in order to determine the influence function corre-
sponding to the MHDE.

2. Influence functions

In this section we determine the influence function of the MHDE. We establish that the maximum likelihood
estimator and MHDE have the same influence functions at the model fθ .

If x is from the sample space, let δx(y) be the indicator function for x. Let gεx(y) = (1 − ε)g(y) + εδx(y) be an
ε-contaminated version of the density g(y). If T is a functional on the space of densities, then its influence function
is defined to be IF(x;T ,g) = limε→0

T (gεx)−T (g)
ε

.

In the following, for a given density g, we suppose that T (g) there exists and we identify T (g) with
(μ(g)t , (uvecV (g))t )t . We also suppose that for the density g, the corresponding influence function IF(x;T ,g) there
exists.

Theorem 2.1. The influence function of the functional T corresponding to the MHDE is IF(x;T ,g) = DEN−1NUM,
where

NUM =
(

g(x)

fT (g)(x)

)− 1
2

s
(
x,T (g)

) − EG

[(
g(X)

fT (g)(X)

)− 1
2

s
(
X,T (g)

)]

DEN = EG

[(
g(X)

fT (g)(X)

)− 1
2

s
(
X,T (g)

)
s
(
X,T (g)

)t
]

− 2
∫ {(

g(y)

fT (g)(y)

) 1
2 − 1

}
∇2fT (g)(y)dy.

Proof. For the ε-contaminated density, we have
∫

A(
gεx(y)

fT (gεx )(y)
− 1)∇fT (gεx)(y)dy = 0. Now derivation yields

∫
A′

(
g(y)

fT (g)(y)
− 1

)
(δx(y) − g(y))fT (g)(y) − g(y)(∇fT (g)(y))t IF(x;T ,g)

f 2
T (g)(y)

∇fT (g)(y)dy

+
∫

A

(
g(y)

fT (g)(y)
− 1

)
∇2fT (g)(y)IF(x;T ,g)dy = 0.

Then we obtain the equality[∫
A′

(
g(y)

fT (g)(y)
− 1

)∇fT (g)(y)∇fT (g)(y)t

f 2
T (g)(y)

g(y)dy −
∫

A

(
g(y)

fT (g)(y)
− 1

)
∇2fT (g)(y)dy

]
IF(x;T ,g)

= A′
(

g(x)

fT (g)(x)
− 1

)∇fT (g)(x)

fT (g)(x)
−

∫
A′

(
g(y)

fT (g)(y)
− 1

)∇fT (g)(y)

fT (g)(y)
g(y)dy.

By replacing A(δ) from (4), we obtain the influence function IF(x;T ,g) = DEN−1NUM where

NUM =
(

g(x)

fT (g)(x)

)− 1
2

s
(
x,T (g)

) − EG

[(
g(X)

fT (g)(X)

)− 1
2

s
(
X,T (g)

)]

DEN = EG

[(
g(X)

fT (g)(X)

)− 1
2

s
(
X,T (g)

)
s
(
X,T (g)

)t
]

− 2
∫ {(

g(y)

fT (g)(y)

) 1
2 − 1

}
∇2fT (g)(y)dy. �
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Corollary 2.2. If the true density g is the model fθ , then T (g) = θ and the influence function corresponding to the
functional T is IF(x;T ,fθ ) = I−1

θ s(x, θ).

At the model, we recognize the influence function of the maximum likelihood estimator. This is unbounded and
hence, the robustness of the corresponding MHDE cannot be explained through their influence function. This aspect
has been already noted in literature for other minimum Hellinger procedures. Among others, Lindsay [6] underlined
the limitation of the influence function approach for such procedures and indicated some other ways to explore their
robustness properties. In our context, besides of the RAF, whose form indicate the quality of the MHDE to downweight
some possible outliers that manifest as large values of δ, the asymptotic breakdown point, that we treat in the next
section, offers information on the robustness of the MHDE with respect to some contamination models.

3. Breakdown analysis

The breakdown point of a statistical functional represents the smallest fraction of contamination in data that may
cause an arbitrarily extreme value in the estimate. Consider the contamination model Hε,n = (1 − ε)G + εKn where
{Kn} is a sequence of contaminating distributions. Denote by hε,n, g and kn the corresponding densities.

Extending the definition of Simpson [8], we say that there is breakdown in T for ε level contamination if there
exists a sequence {Kn} such that d(T (hε,n), T (g)) → ∞ as n → ∞, where

d
(
T (hε,n), T (g)

) = ∥∥μ(hε,n) − μ(g)
∥∥ + max

{∣∣λ1
(
V (hε,n)

) − λ1
(
V (g)

)∣∣, ∣∣∣∣ 1

λp(V (hε,n))
− 1

λp(V (g))

∣∣∣∣
}

λ1(A) � λ2(A) � · · · � λp(A) being the eigenvalues of the matrix A. Then the breakdown point is defined as the
smallest level of contamination ε for which T breakdown.

When we estimate a covariance matrix we have to be sure not only that there are no ‘explosions’ of the respective
estimator, but also that there are no ‘implosions’ of this (that is the estimator is not arbitrarily close to zero). This
remark justifies the use of the distance d in the definition of the breakdown point, such that the breakdown is produced
when the location ‘explodes’ or the covariance ‘explodes’ or ‘implodes’.

The following assumptions reflect the intuitively worst possible choice of the contamination. We write below
θn = T (hε,n).

A1.
∫

min{g(x), kn(x)} → 0 as n → ∞. That is the contaminating distribution becomes asymptotically singular to
the true distribution.

A2. For any fixed θ ∈ Θ ,
∫

min{fθ (x), kn(x)} → 0 as n → ∞. That is the contaminating distribution is asymptoti-
cally singular to the specified models.

A3.
∫

min{g(x), fθn(x)} → 0 as n → ∞ if d(θn, T (g)) → ∞ as n → ∞. This means that large values of the para-
meter θ give distributions which become singular to the true distribution.

Theorem 3.1. Assume that the true distribution, the model and the contaminating sequence satisfy conditions A1–A3.
Then the asymptotic breakdown point of the MHDE is at least 1/2 at the model.

Proof. Let θn = T (hε,n) be the minimizer of φH (hε,n, fθ ). Given the level of contamination ε, let, if possible, break-
down occurs, that is there exists a sequence {Kn} such that d(θn, T (g)) → ∞ as n → ∞.

Then

φH (hε,n, fθ ) =
∫
An

D
(
hε,n(x), fθn(x)

) +
∫
Ac

n

D
(
hε,n(x), fθn(x)

)
(6)

where An = {x: g(x) > max{kn(x), fθn(x)}} and D(g,f ) = C(
g
f

− 1)f = 2[g1/2 − f 1/2]2.

From A1 we have
∫
An

kn(x) → 0 and from A3 we have
∫
An

fθn(x) → 0 as n → ∞. Hence, using Cauchy–Schwarz
inequality we can see that∣∣∣∣

∫
D

(
hε,n(x), fθn(x)

) −
∫

D
(
(1 − ε)g(x),0

)∣∣∣∣ → 0 (7)
An An
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as n → ∞. From A1 and A3, we can see that
∫
Ac

n
g(x) → 0 and∣∣∣∣

∫
An

D
(
(1 − ε)g(x),0

) −
∫

D
(
(1 − ε)g(x),0

)∣∣∣∣ =
∣∣∣∣
∫
An

2(1 − ε)g −
∫

2(1 − ε)g

∣∣∣∣ → 0 (8)

as n → ∞. Using (7) and (8) we have∫
An

D
(
hε,n(x), fθn(x)

) → 2(1 − ε). (9)

From A1 and A3, we have
∫
Ac

n
g(x) → 0. Using an analogous reasoning as above,∣∣∣∣

∫
Ac

n

D
(
hε,n(x), fθn(x)

) −
∫

D
(
εkn(x), fθn(x)

)∣∣∣∣ → 0.

Taking into account that C is a convex function, by Jensen inequality we have∫
D

(
εkn(x), fθn(x)

) =
∫

C

(
εkn(x)

fθn(x)
− 1

)
fθn(x) � C

(∫
εkn(x) − fθn(x)

)
= C(ε − 1) = 2[√ε − 1]2.

Then with (9) it follows that

lim inf
n→∞ φH (hε,n, fθn) � 4(1 − √

ε). (10)

For any fixed θ , let Bn = Bn(θ) = {x : kn(x) > max{g(x), fθ (x)}}.
From A1,

∫
Bn

g(x) → 0 and from A2,
∫
Bn

fθ (x) → 0 as n → ∞. From A1 and A2, we have
∫
Bc

n
kn(x) → 0 as

n → ∞ and using Cauchy–Schwarz inequality, we obtain∣∣∣∣
∫
Bn

D
(
hε,n(x), fθ (x)

) −
∫
Bn

D
(
εkn(x),0

)∣∣∣∣ → 0

as n → ∞. Notice that
∫
Bn

D(εkn(x),0) = 2ε
∫
Bn

kn → 2ε as n → ∞. So∫
Bn

D
(
hε,n(x), fθ (x)

) → 2ε (11)

as n → ∞.
Similarly we have∣∣∣∣

∫
Bc

n

D
(
hε,n(x), fθ (x)

) −
∫

D
(
(1 − ε)g(x), fθ (x)

)∣∣∣∣ → 0

as n → ∞. Then from (11) we have

lim
n→∞φH (hε,n, fθ ) = 2ε +

∫
D

(
(1 − ε)g(x), fθ (x)

)
� 2ε + inf

θ

∫
D

(
(1 − ε)g(x), fθ (x)

)
. (12)

Let θ∗ be the minimizer, over Θ , of
∫

D((1 − ε)g(x), fθ (x)). The inequality in (12) becomes equality for θ = θ∗.
Observe that among all fixed θ , the divergence φH is minimized in the limit by θ∗.

When the true distribution belongs to the model, then g = fθt and∫
D

(
(1 − ε)fθt , fθt

) = 2[√1 − ε − 1]2

which is also the lower bound for D((1 − ε)fθt , fθ ), over θ ∈ Θ . So in this case θ∗ = θt and limn→∞ φH (hε,n, fθ∗) =
4[1 − √

1 − ε]. Thus at the model, for ε < 1
2 , limn→∞ φH (hε,n, fθ∗) < 4[1 − √

ε]. Then using (10) we obtain

lim
n→∞φH

(
hε,n, fθ∗

)
< lim inf

n→∞ φH (hε,n, fθn)

and deduce that θn is not a minimizer for every n. The consequence is that every level of contamination ε for which
breakdown occurs must satisfy ε � 1

2 . �
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