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Abstract

In this Note, the global existence of strong solutions of the primitive equations for the ocean in space dimension 3 with the
Dirichlet boundary condition is obtained. The method of the proof can be easily adapted to treat full primitive equations in a
domain with a varying bottom topography. To cite this article: I. Kukavica, M. Ziane, C. R. Acad. Sci. Paris, Ser. I 345 (2007).
© 2007 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Résumé

La régularité des solutions des équations primitives de l’océan en dimension trois. Dans cette Note, on établie l’existence
globale des solutions fortes des équations primitives de l’océan en dimension 3 pour des conditions aux limites de type Dirichlet.
La méthode de démonstration s’adapte aisément au cas des équations primitives générales dans un domaine avec un fond de
topographie variable. Pour citer cet article : I. Kukavica, M. Ziane, C. R. Acad. Sci. Paris, Ser. I 345 (2007).
© 2007 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

In this Note, we prove the global existence and uniqueness of solutions of the primitive equations of the ocean
in a bounded domain with Dirichlet boundary conditions. These equations are the fundamental physical model in
geophysical dynamics and oceanography [8,11]. The mathematical formulation of the primitive equations was initiated
by J.-L. Lions, Temam, and Wang in [5–7]. They proved the global existence of weak solutions and they studied
asymptotic and numerical properties of the solutions. The local existence of strong solutions for initial data in H 1

was proven in [10,2]. Recently, Cao and Titi proved in [1] the global existence of strong solutions for the primitive
equations in the case of Neumann boundary conditions on the bottom and the top (see also [3]).

In this Note, we settle the case of (physical) Dirichlet boundary conditions. We provide the sketch of the proof for
the case of Dirichlet boundary conditions on the bottom and the sides, and the Neumann boundary condition on the
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top for flat topography. For further details, other physical boundary conditions, and the non-flat boundary topography,
see [4].

2. The regularity of the primitive equations

We address the existence and the uniqueness of strong solutions for the primitive equations of the ocean:

∂uk

∂t
− ν�uk +

3∑
j=1

∂j (ujuk) + ∂kp = fk, k = 1,2, (PEk)

with the divergence free condition
∑3

k=1 ∂kuk = 0. Denote v = (u1, u2) and u = (u1, u2, u3). The equations are
derived from the 3D Navier–Stokes system under the hydrostatic approximation assumption. The differences with the
3D NSE are the lack of an evolution equation for u3 and the fact that p is independent of x3. The initial condition is
v(·,0) = v0, where v0 = (u01, u02) :Ω → R

2 satisfies div2
∫ 0
−h

v0 dx3 = 0. The equations are set in a bounded domain
Ω = Ω2 × (−h,0), where h is a positive constant and Ω2 ⊆ R

2 is a smooth bounded domain.
The boundary conditions are the following. On the top we have ∂v/∂x3 = 0 and u3 = 0, for (x1, x2, x3) ∈ Γt =

Ω2 × {0}. while on the bottom, we assume v = 0 and u3 = 0 for (x1, x2, x3) ∈ Γb = Ω2 × {−h}. On the side, we have
v = 0 for (x1, x2, x3) ∈ Γs = ∂Ω2 ×[−h,0]. The full primitive system also contains the equations for the temperature
and the salinity, and those can be added without any additional difficulties. Certain modifications are required in the
case of the varying bottom, as well as in the case of physical boundary conditions on the top ∂v/∂x3 + αv = 0 and
u3 = 0 for (x1, x2, x3) ∈ Γt = Ω2 × {0}. These modifications are given in [4]. Let

H =
{

v ∈ (
L2(Ω)

)2: div2

0∫
−h

v dx3 = 0 on Ω2,

( 0∫
−h

v dx3

)
· n = 0 on Γs

}
,

and V = {v ∈ H ∩ H 1: v = 0 on Γb ∪ Γs}. The norms on H and V are denoted by ‖ · ‖H = ‖ · ‖L2 and ‖ · ‖V

respectively. We denote by A the Stokes-type operator associated with the primitive equations; that is Av = −P�v,
where P is the L2-orthogonal projection onto H . Let f ∈ L2

loc([0,∞),L2(Ω)2). Then for all v0 ∈ H , there exists a
weak solution v ∈ L∞

loc([0,∞),H) ∩ L2
loc([0,∞),V ) [10], and the solution satisfies the energy inequality

1

2

∫
Ω

|v|2∣∣
t1

+ ν

3∑
j=1

2∑
k=1

t1∫
t0

∫
Ω

∂jvk∂j vk � 1

2

∫
Ω

|v|2∣∣
t0

+
t1∫

t0

(v, f )L2

for almost every t0 � 0 (t0 = 0 included) and every t1 � t0. By [10,2], for every v0 ∈ V , there exists a maximal
Tmax > 0 such that there exists a strong solution v ∈ L∞

loc([0, Tmax),V ) ∩ L2
loc([0, Tmax),D(A)) of the primitive equa-

tions. Also, if Tmax < ∞, then limt→Tmax ‖v(·, t)‖V = ∞.

Theorem 2.1. Assume that f ∈ L2
loc([0,∞),L2(Ω)) and v0 ∈ V . Then, there exists a unique strong solution v ∈

L∞
loc([0,∞),V ) ∩ L2

loc([0,∞),D(A)) of the primitive equations with the initial datum u0.

Proof (sketch). Without loss of generality, ν = 1. Assume contrary to the assertion that Tmax ∈ (0,∞), and let
T ∈ (0, Tmax). Denote

E(t) =
(

2∑
k=1

∥∥∇uk(·, t)
∥∥2

L2

)1/2

.

Choose δ > 0 (which depends on Tmax) such that ‖E‖2
L2(t,t+2δ)

� 1/γ , where γ is a sufficiently large constant. Next,

we find tj ∈ (jδ, (j + 1)δ), where j = 1, . . . , l, such that ‖∇v(·, tj )‖2
L2 � δ−1

∫ (j+1)δ

jδ
‖∇v(·, τ )‖2

L2 dτ � 1/δγ where
l is the largest integer such that (l + 1)δ � T . Also, set t0 = 0 and tl+1 = T . The proof consists on estimating

J (t) =
(

2∑∥∥uk(·, t)
∥∥6

L6

)1/6

, K(t) =
(

2∑∥∥∂3uk(·, t)
∥∥2

L2

)1/2
k=1 k=1
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and

J̄ (t) =
(

2∑
k=1

∫
Ω

∣∣∇(
uk(·, t)3)∣∣2

)1/6

, K(t) =
(

2∑
k=1

∥∥∇∂3uk(·, t)
∥∥2

L2

)1/2

on (tj , tj+1), where j ∈ {0, . . . , l} is arbitrary. In order to get an estimate for J , we multiply (PEk) with u5
k , where

k = 1,2, integrate over Ω , and add. The pressure term −∑2
k=1

∫
u5

k∂kp = −h
∑2

k=1

∫
M(u5

k)∂kp is bounded from
above by CJ 2J̄ 3‖∇2p‖L3/2 . (Note that we used independence of p on x3.) Here, M is the vertical averaging operator
Mw(x1, x2) = h−1

∫ 0
−h

w(x1, x2, x3)dx3. We get (d/dt)J 6 � C‖∇2p‖2
L3/2J

4 + CF 2J 4, and thus

d

dt
J 4 � C‖∇2p‖2

L3/2J
2 + CF 2J 2,

where F(t) = (
∑2

k=1 ‖fk(·, t)‖2
L2)

1/2. In order to obtain an estimate for K and K , we multiply (PEk) with −∂33uk ,
where k = 1,2, integrate over Ω , and add. We get:

1

2

d

dt
K2 + K2 =

2∑
j,k=1

∫
Ω

(
∂3j ujuk∂3uk +

∫
Ω

∂3ujuk∂3j uk − 2
∫
Ω

uj∂3j uk∂3uk

)

+
2∑

k=1

(∫
Ω

∂kp∂33uk −
∫
Ω

fk∂33uk

)
. (1)

The first three integrals can be bounded from above by CJK1/2K3/2. In order to estimate the pressure term, we write:

∣∣∣∣∣
2∑

k=1

∫
Ω2

∂kp(x1, x2)

0∫
−h

∂33uk(x1, x2, x3)dx3 dx1 dx2

∣∣∣∣∣ �
2∑

k=1

‖∂kp‖L3/2(Ω2)

∥∥∂3uk(·, ·,−h)
∥∥

L3(Ω2)

and use the trace theorem to estimate ‖∂3uk(·, ·,−h)‖L3 � C(K + K) � CK . Now, we need to bound ‖∇2p‖
L2

t L
3/2
x

.

For this, we average the primitive equations in the third direction and obtain:

∂t (Muk) − �2Muk + ∂kp = M∂33uk −
2∑

j=1

M∂j (ujuk) + Mfk

for k = 1,2, with ∂1Mu1 + ∂2Mu2 = 0. The theorem of Sohr and von Wahl [9] applied to the equation for Mv then
leads to

‖∇2p‖
L2

t L
3/2
x

� C

2∑
j=1

∥∥∂3uj (·, ·,−h, ·)∥∥
L2

t L
3/2
x

+ C

2∑
j,k=1

‖uj∂juk‖L2
t L

3/2
x

+ C

2∑
k=1

‖fk‖L2
t L

2
x
+ C

2∑
k=1

∥∥∇uk(·, tj )
∥∥

L2 ,

which is less than or equal to C‖K‖1/2
L2

t

‖K‖1/2
L2

t

+ C‖JE‖L2
t
+ C‖F‖L2

t
+ C

∑2
k=1 ‖∇uk(·, tj )‖L2 . Using the pressure

estimate, we get:

J (t)4 � J (tj )
4 + C‖K‖L2

t
‖K‖L2

t
sup

tj �t�tj+1

J (t)2 + C‖E‖2
L2

t
sup

tj �t�tj+1

J (t)4

+ C

(
‖F‖2

L2
t
+

2∑
k=1

∥∥∇uk(·, tj )
∥∥2

L2

)
sup

tj �t�tj+1

J (t)2, (2)

for t ∈ [tj , tj+1), while (1) leads to
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K(t)2 + ‖K‖2
L2

t (tj ,tj+1)
� C‖K‖2

L2
t

sup
tj �t�tj+1

J (t)4 + C‖K‖L2
t
‖K‖L2

t (tj ,tj+1)

+ C‖E‖2
L2

t
sup

tj �t�tj+1

J (t)2 + C

(
‖F‖2

L2
t
+

2∑
k=1

∥∥∇uk(·, tj )
∥∥2

L2

)
, (3)

for t ∈ [tj , tj+1). After a short computation, we conclude that (2) and (3) imply:

sup
tj �t�tj+1

J (t)4 + sup
tj �t�tj+1

K(t)2 + ‖K‖2
L2

t (tj ,tj+1)

� J (tj )
4 + C

γ
‖K‖2

L2
t
+ C

γ
sup

tj �t�tj+1

J (t)4 + C‖F‖4
L2

t
+ C

2∑
k=1

∥∥∇uk(·, tj )
∥∥4

L2

+ C

γ
+ C

γ
sup

tj �t�tj+1

J (t)2 + C‖F‖2
L2

t
+ C

2∑
k=1

∥∥∇uk(·, tj )
∥∥2

L2 ,

where we used K(t) � E(t). If γ is a large enough positive constant, the sum of the second and the third term on the
right-hand side can be absorbed in the half of the left-hand side. Hence, suptj �t�tj+1

J (t)4 + suptj �t�tj+1
K(t)2 +

‖K‖2
L2

t (tj ,tj+1)
� Cδ−2 +C +C‖F‖4

L2
t

. Then, by induction, we obtain uniform boundedness of J (t), K(t), and
∫ t

0 K2

up to T . From here, it is then not difficult to show that ‖v(·, t)‖V remains bounded on (0, Tmax), which contradicts
Tmax < ∞. For more details, cf. [4]. �
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