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Abstract

Let n � 3 and consider the subcritical nonlinear Schrödinger equation, i∂tu + �u = |u|αu, with initial data u0 ∈ Hs(Rn).
When s � 1, Kato proved that if a maximal solution exists, then it is unique in C([0, Tmax),Hs). Previously, uniqueness had only
been proven in strictly smaller subspaces. The existence of a solution is assured when s ∈ [0,1], so that the subcritical nonlinear
Schrödinger equation is unconditionally locally well-posed in H 1. We extend the uniqueness result so that the subcritical nonlinear
Schrödinger equation is unconditionally locally well-posed in Hs when s ∈ [ n

2(n−1)
,1]. To cite this article: K.M. Rogers, C. R.

Acad. Sci. Paris, Ser. I 345 (2007).
© 2007 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Résumé

Unicité inconditionnelle pour l’équation de Schrödinger non-linéaire sous-critique dans Hs . On considère l’équation de
Schrödinger linéaire sous-critique i∂tu+ �u = |u|αu, sur R

n, n � 3, à donnée initiale u0 dans Hs(Rn). Si s � 1, Kato a démontré
que si il existe une solution maximale, elle est unique dans C([0, Tmax),Hs). Les seuls résultats d’unicité connus auparavant étaient
dans des sous-espaces stricts de cet espace. L’existence d’une solution étant connue pour s ∈ [0,1], l’équation de Schrödinger
sous-critique est localement bien posée dans H 1 sans condition supplémentaire pour l’unicité. Dans cette Note, nous généralisons
le résultat d’unicité de Kato, montrant que l’équation est bien posée avec unicité inconditionnelle dans tous les espaces Hs ,
s ∈ [ n

2(n−1)
,1]. Pour citer cet article : K.M. Rogers, C. R. Acad. Sci. Paris, Ser. I 345 (2007).

© 2007 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

Let n � 3, α > 0 and s ∈ [0, n
2 ), and consider the Cauchy problem for the nonlinear Schrödinger equation,

(NLSs,α)

{
i∂tu + �u = ±|u|αu,

u(·,0) = u0 ∈ Hs(Rn).
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We consider α which are strictly smaller than the critical power under scaling αs = 4
n−2s

. We denote the smallest
integer less than or equal to s by [s]. T. Cazenave and F.B. Weissler [2] (see also [6,7]) proved that NLSs,α is locally
well-posed in

C
([0, Tmax),H

s(Rn)
) ∩ L

q

loc

([0, Tmax),B
s
r,2(R

n)
)

for all α ∈ ([s], αs], where q = 4(α+2)
α(n−2s)

, r = n(α+2)
n+αs

, and Bs
r,2 is the Besov space. The result could be described as

‘conditional’ in the sense that we restrict attention to an auxiliary space L
q

loc([0, Tmax),B
s
r,2) in order to be sure that

the solution is unique.
To prove well-posedness in the unrestricted space C([0, Tmax),H

s), it is necessary to prove uniqueness there. This
is known as unconditional well-posedness.

Kato [7] proved uniqueness when α < min( 2+2s
n−2s

, αs), so that, combining this with the existence and continuity

results, we see that NLSs,α is unconditionally locally well-posed in the range α ∈ ([s],min( 2+2s
n−2s

, αs)). The restriction
α > [s] can be removed when s = 1 or s ∈ 2N, so that subcritical NLSα,s is unconditionally locally well-posed in
these classical Sobolev spaces.

G. Furioli, F. Planchon, and E. Terraneo [4,5] used paraproduct techniques to extend Kato’s result. They proved
uniqueness in the slightly larger space C([0, Tmax), Ḣ

s) when

max

(
1, s,

2s

n − 2s

)
< α < min

(
2 + 4s

n − 2s
,
n + 2 − 2s

n − 2s
,
n + 2s

n − 2s
,αs

)
. (1)

In particular, combining this with the existence and continuity results, 3-dimensional NLS2,s is unconditionally
locally well-posed when s ∈ ( 1

2 ,1).
For a more thorough account of unconditional well-posedness, including the results in lower dimensions, see [5].
As Kato’s uniqueness result is complete in the subcritical range when s � 1, we restrict our attention to the range

s ∈ [0,1). Here the condition α > [s] is vacuous, so that the subcritical existence theory is complete. By proving
uniqueness, we obtain

Theorem 1.1. Let s ∈ [0,1]. Then NLSs,α is unconditionally locally well-posed in the range 2+2s
n−2s

� α <

min(
2+4s−4s/n

n−2s
, αs).

In particular, when s >
n(n−2)
6n−4 , we fill the gap 2+2s

n−2s
� α � max(1, s, 2s

n−2s
) which was not dealt with by the result

of Kato or that of Furioli, Planchon and Terraneo. We will see that the condition s >
n(n−2)
6n−4 is not overly restrictive in

low dimensions.
When n = 3 and s < 1/2, the condition α < 2+4s

n−2s
in (1) is the most restrictive, and when s > 1/2, the most

restrictive condition is α < n+2−2s
n−2s

. When s = 1/2, they both coincide with α < αs , so that subcritical NLS1/2,α is
unconditionally locally well-posed.

On the other hand, combining Theorem 1.1 directly with the result of Kato, we see that we have uniqueness when
α < min(

2+4s−4s/n
n−2s

, αs). The condition α < αs is the most restrictive when s � 3/4, giving

Corollary 1. Let n = 3 and s = 1
2 or s ∈ [ 3

4 ,1]. Then subcritical NLSs,α is unconditionally locally well-posed.

When n = 4 and s � 1/2, we fill the gap, and the most restrictive condition is α < αs . Thus, we obtain

Corollary 2. Let n = 4 and s ∈ [ 1
2 ,1]. Then subcritical NLSs,α is unconditionally locally well-posed.

When n = 5, the condition s >
n(n−2)
6n−4 becomes the most restrictive, giving

Corollary 3. Let n = 5 and s ∈ ( 15
26 ,1]. Then subcritical NLSs,α is unconditionally locally well-posed.

Finally, when n � 6 the condition s >
n(n−2)
6n−4 becomes too restrictive to fill the gap. On the other hand, combining

Theorem 1.1 directly with the uniqueness result of Kato, we obtain
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Corollary 4. Let n � 6 and s ∈ [ n
2(n−1)

,1]. Then subcritical NLSs,α is unconditionally locally well-posed.

The proof combines ideas of Kato with an inhomogeneous Strichartz estimate due to M.C. Vilela [10].

2. Proof of Theorem 1.1

By Duhamel’s formula, the solution to NLSs,α can be written as

u(x, t) = eit�u0(x) ∓ i

t∫
0

ei(t−τ)�|u|αu(·, τ )(x)dτ,

where eit�f denotes the solution to the free problem i∂tu + �u = 0, with initial datum u(·,0) = f .
The following theorem extends results of R.S. Strichartz [9], J. Ginibre and G. Velo [6], K. Yajima [11], Cazenave

and Weissler [1,3], and M. Keel and T. Tao [8]. These type of estimates are closely related to the restriction of the
Fourier transform, and the first results in this direction were due to E.M. Stein and P. Tomas.

Theorem 2.1. (See [10].) Let r ∈ [1, 2n
n+2 ], 1

q
= 1 − n

2 ( 1
r

− 1
p
), and , 1

r
− 2

n
< 1

p
� n

n−2 (1 − 1
r
). Then

∥∥∥∥∥
t∫

0

ei(t−τ)�F (·, τ )(x)dτ

∥∥∥∥∥
L∞

t ([0,T ],Lp
x

(
Rn))

� C‖F‖L
q
t ([0,T ],Lr

x

(
Rn

)
).

In order to prove uniqueness, we consider two maximal solutions u and v ∈ C([0, T0],H s), where T0 < Tmax. By
Sobolev embedding, Hs(Rn) ⊂ Lp(Rn), where 1

p
= 1

2 − s
n

, so that ‖u− v‖L∞
t ([0,T0],Lp) is well-defined and finite. We

will prove that

‖u − v‖L∞
t ([0,T ],Lp

x ) � c‖u − v‖L∞
t ([0,T ],Lp

x ),

for some T ∈ (0, T0] and c ∈ (0,1), so that u(t) = v(t) in [0, T ].
By Duhamel’s formula and Theorem 2.1,

‖u − v‖L∞
t ([0,T ],Lp) =

∥∥∥∥∥
t∫

0

ei(t−τ)�
(|u|αu − |v|αv

)
(·, τ )(x)dτ

∥∥∥∥∥
L∞

t ([0,T ],Lp)

� C
∥∥|u|αu − |v|αv

∥∥
L

q
t ([0,T ],Lr

x)
,

where r , p and q satisfy the conditions of Theorem 2.1. Now it is easy to calculate that∣∣|u|αu − |v|αv
∣∣ � C|u − v|(|u|α + |v|α)

,

so that by Hölder’s inequality,

‖u − v‖L∞
t ([0,T ],Lp) � C‖u − v‖

L
qp
r

t L
p
x

∥∥|u|α + |v|α∥∥
L

qp̃
t L

rp̃
x

� C‖u − v‖
L

qp
r

t L
p
x

(‖u‖α

L
qp̃α
t L

rp̃α
x

+ ‖v‖α

L
qp̃α
t L

rp̃α
x

)
,

where r
p

+ 1
p̃

= 1.

One can check that by the hypothesis, n+2
n−2s

� α + 1 � 2n
n−2s

, so that letting r = 2n
(α+1)(n−2s)

, we have that r ∈
[1, 2n

n+2 ] and rp̃α = p. Now the restriction α < αs of the hypothesis corresponds to the condition 1
r

− 2
n

< 1
p

that

appears in Theorem 2.1, and α � 2+4s−4s/n
n−2s

corresponds to the condition 1
p

� n
n−2 (1 − 1

r
). It can also be calculated

that qp
r

and qp̃α are finite, so that by Hölder,

‖u − v‖L∞([0,T ],Lp) � CT β‖u − v‖L∞([0,T ],Lp
)

(‖u‖α
∞( p) + ‖v‖α

∞( p))

t t x Lt [0,T ],Lx Lt [0,T ],Lx
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for some β > 0. Choosing T sufficiently small,

CT β
(‖u‖α

L∞
t ([0,T0],Lp

x )
+ ‖v‖α

L∞
t ([0,T0],Lp

x )

)
� c < 1,

so that

‖u − v‖L∞
t ([0,T ],Lp

x (Rn)) � c‖u − v‖L∞
t ([0,T ],Lp

x (Rn)),

as required.
We note that the choice of T depended only on ‖u‖α

L∞
t ([0,T0],Lp

x )
and ‖v‖α

L∞
t ([0,T0],Lp

x )
, so that we can iterate the

process, considering u(T ) = v(T ) to be the new initial datum, in order to reach T0. As we can choose T0 to be
arbitrarily close to Tmax, we see that the solutions are equal for all time t ∈ [0, Tmax), and we are done. �

By a counterexample of Vilela [10], the estimate in Theorem 2.1 cannot hold when 1
p

+ 1
r

> 1 + 1
n
. Thus, an

extension of Theorem 2.1, combined with the previous argument, could only weaken the restriction in Theorem 1.1
to α < min( 2+4s

n−2s
, αs). This would correspond to unconditional well-posedness for subcritical NLSs,α in the range

s ∈ [ 1
2 ,1]. In particular, subcritical unconditional well-posedness in L2 is well beyond the capabilities of these argu-

ments.
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