

Available online at www.sciencedirect.com

COMPTES RENDUS MATHEMATIQUE

C. R. Acad. Sci. Paris, Ser. I 345 (2007) 395-398

http://france.elsevier.com/direct/CRASS1/

Partial Differential Equations

Unconditional well-posedness for subcritical NLS in H^s

Keith M. Rogers¹

Departamento de Matemáticas, Universidad Autónoma de Madrid, 28049 Madrid, Spain

Received 27 June 2007; accepted 12 September 2007

Presented by Jean Bourgain

Abstract

Let $n \ge 3$ and consider the subcritical nonlinear Schrödinger equation, $i\partial_t u + \Delta u = |u|^{\alpha} u$, with initial data $u_0 \in H^s(\mathbb{R}^n)$. When $s \ge 1$, Kato proved that if a maximal solution exists, then it is unique in $C([0, T_{\max}), H^s)$. Previously, uniqueness had only been proven in strictly smaller subspaces. The existence of a solution is assured when $s \in [0, 1]$, so that the subcritical nonlinear Schrödinger equation is unconditionally locally well-posed in H^1 . We extend the uniqueness result so that the subcritical nonlinear Schrödinger equation is unconditionally locally well-posed in H^s when $s \in [\frac{n}{2(n-1)}, 1]$. To cite this article: K.M. Rogers, C. R. Acad. Sci. Paris, Ser. I 345 (2007).

© 2007 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Résumé

Unicité inconditionnelle pour l'équation de Schrödinger non-linéaire sous-critique dans H^s . On considère l'équation de Schrödinger linéaire sous-critique $i\partial_t u + \Delta u = |u|^{\alpha} u$, sur \mathbb{R}^n , $n \ge 3$, à donnée initiale u_0 dans $H^s(\mathbb{R}^n)$. Si $s \ge 1$, Kato a démontré que si il existe une solution maximale, elle est unique dans $C([0, T_{\max}), H^s)$. Les seuls résultats d'unicité connus auparavant étaient dans des sous-espaces stricts de cet espace. L'existence d'une solution étant connue pour $s \in [0, 1]$, l'équation de Schrödinger sous-critique est localement bien posée dans H^1 sans condition supplémentaire pour l'unicité. Dans cette Note, nous généralisons le résultat d'unicité de Kato, montrant que l'équation est bien posée avec unicité inconditionnelle dans tous les espaces H^s , $s \in [\frac{n}{2(n-1)}, 1]$. *Pour citer cet article : K.M. Rogers, C. R. Acad. Sci. Paris, Ser. I 345 (2007).* © 2007 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

Let $n \ge 3$, $\alpha > 0$ and $s \in [0, \frac{n}{2})$, and consider the Cauchy problem for the nonlinear Schrödinger equation,

(NLS<sub>*s*,
$$\alpha$$
)
 $\begin{cases} i\partial_t u + \Delta u = \pm |u|^{\alpha} u, \\ u(\cdot, 0) = u_0 \in H^s(\mathbb{R}^n). \end{cases}$</sub>

E-mail address: keith.rogers@uam.es.

¹ Supported by MEC projects MTM2004-00678 and MTM2007-60952, and UAM-CM project CCG06-UAM/ESP-0286.

¹⁶³¹⁻⁰⁷³X/\$ – see front matter © 2007 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved. doi:10.1016/j.crma.2007.09.003

We consider α which are strictly smaller than the critical power under scaling $\alpha_s = \frac{4}{n-2s}$. We denote the smallest integer less than or equal to *s* by [*s*]. T. Cazenave and F.B. Weissler [2] (see also [6,7]) proved that NLS_{*s*, α} is locally well-posed in

$$C([0, T_{\max}), H^s(\mathbb{R}^n)) \cap L^q_{\operatorname{loc}}([0, T_{\max}), B^s_{r,2}(\mathbb{R}^n))$$

for all $\alpha \in ([s], \alpha_s]$, where $q = \frac{4(\alpha+2)}{\alpha(n-2s)}$, $r = \frac{n(\alpha+2)}{n+\alpha s}$, and $B_{r,2}^s$ is the Besov space. The result could be described as 'conditional' in the sense that we restrict attention to an auxiliary space $L_{loc}^q([0, T_{max}), B_{r,2}^s)$ in order to be sure that the solution is unique.

To prove well-posedness in the unrestricted space $C([0, T_{max}), H^s)$, it is necessary to prove uniqueness there. This is known as unconditional well-posedness.

Kato [7] proved uniqueness when $\alpha < \min(\frac{2+2s}{n-2s}, \alpha_s)$, so that, combining this with the existence and continuity results, we see that NLS_{*s*, α} is unconditionally locally well-posed in the range $\alpha \in ([s], \min(\frac{2+2s}{n-2s}, \alpha_s))$. The restriction $\alpha > [s]$ can be removed when s = 1 or $s \in 2\mathbb{N}$, so that subcritical NLS_{α,s} is unconditionally locally well-posed in these classical Sobolev spaces.

G. Furioli, F. Planchon, and E. Terraneo [4,5] used paraproduct techniques to extend Kato's result. They proved uniqueness in the slightly larger space $C([0, T_{max}), \dot{H}^s)$ when

$$\max\left(1, s, \frac{2s}{n-2s}\right) < \alpha < \min\left(\frac{2+4s}{n-2s}, \frac{n+2-2s}{n-2s}, \frac{n+2s}{n-2s}, \alpha_s\right). \tag{1}$$

In particular, combining this with the existence and continuity results, 3-dimensional NLS_{2,s} is unconditionally locally well-posed when $s \in (\frac{1}{2}, 1)$.

For a more thorough account of unconditional well-posedness, including the results in lower dimensions, see [5].

As Kato's uniqueness result is complete in the subcritical range when $s \ge 1$, we restrict our attention to the range $s \in [0, 1)$. Here the condition $\alpha > [s]$ is vacuous, so that the subcritical existence theory is complete. By proving uniqueness, we obtain

Theorem 1.1. Let $s \in [0, 1]$. Then NLS_{*s*, α} is unconditionally locally well-posed in the range $\frac{2+2s}{n-2s} \leq \alpha < \min(\frac{2+4s-4s/n}{n-2s}, \alpha_s)$.

In particular, when $s > \frac{n(n-2)}{6n-4}$, we fill the gap $\frac{2+2s}{n-2s} \le \alpha \le \max(1, s, \frac{2s}{n-2s})$ which was not dealt with by the result of Kato or that of Furioli, Planchon and Terraneo. We will see that the condition $s > \frac{n(n-2)}{6n-4}$ is not overly restrictive in low dimensions.

When n = 3 and s < 1/2, the condition $\alpha < \frac{2+4s}{n-2s}$ in (1) is the most restrictive, and when s > 1/2, the most restrictive condition is $\alpha < \frac{n+2-2s}{n-2s}$. When s = 1/2, they both coincide with $\alpha < \alpha_s$, so that subcritical NLS_{1/2, α} is unconditionally locally well-posed.

On the other hand, combining Theorem 1.1 directly with the result of Kato, we see that we have uniqueness when $\alpha < \min(\frac{2+4s-4s/n}{n-2s}, \alpha_s)$. The condition $\alpha < \alpha_s$ is the most restrictive when $s \ge 3/4$, giving

Corollary 1. Let n = 3 and $s = \frac{1}{2}$ or $s \in [\frac{3}{4}, 1]$. Then subcritical NLS_{*s*, α} is unconditionally locally well-posed.

When n = 4 and $s \ge 1/2$, we fill the gap, and the most restrictive condition is $\alpha < \alpha_s$. Thus, we obtain

Corollary 2. Let n = 4 and $s \in [\frac{1}{2}, 1]$. Then subcritical NLS_{s, α} is unconditionally locally well-posed.

When n = 5, the condition $s > \frac{n(n-2)}{6n-4}$ becomes the most restrictive, giving

Corollary 3. Let n = 5 and $s \in (\frac{15}{26}, 1]$. Then subcritical NLS_{*s*, α} is unconditionally locally well-posed.

Finally, when $n \ge 6$ the condition $s > \frac{n(n-2)}{6n-4}$ becomes too restrictive to fill the gap. On the other hand, combining Theorem 1.1 directly with the uniqueness result of Kato, we obtain

Corollary 4. Let $n \ge 6$ and $s \in [\frac{n}{2(n-1)}, 1]$. Then subcritical NLS_{s, α} is unconditionally locally well-posed.

The proof combines ideas of Kato with an inhomogeneous Strichartz estimate due to M.C. Vilela [10].

2. Proof of Theorem 1.1

By Duhamel's formula, the solution to $NLS_{s,\alpha}$ can be written as

$$u(x,t) = e^{it\Delta}u_0(x) \mp i \int_0^t e^{i(t-\tau)\Delta} |u|^{\alpha} u(\cdot,\tau)(x) d\tau,$$

where $e^{it\Delta} f$ denotes the solution to the free problem $i\partial_t u + \Delta u = 0$, with initial datum $u(\cdot, 0) = f$.

The following theorem extends results of R.S. Strichartz [9], J. Ginibre and G. Velo [6], K. Yajima [11], Cazenave and Weissler [1,3], and M. Keel and T. Tao [8]. These type of estimates are closely related to the restriction of the Fourier transform, and the first results in this direction were due to E.M. Stein and P. Tomas.

Theorem 2.1. (See [10].) Let $r \in [1, \frac{2n}{n+2}]$, $\frac{1}{q} = 1 - \frac{n}{2}(\frac{1}{r} - \frac{1}{p})$, and $\frac{1}{r} - \frac{2}{n} < \frac{1}{p} \leq \frac{n}{n-2}(1 - \frac{1}{r})$. Then $\left\| \int_{0}^{t} e^{i(t-\tau)\Delta} F(\cdot, \tau)(x) \, d\tau \right\|_{L_{t}^{\infty}([0,T], L_{x}^{p}(\mathbb{R}^{n}))} \leq C \|F\|_{L_{t}^{q}([0,T], L_{x}^{r}(\mathbb{R}^{n}))}.$

In order to prove uniqueness, we consider two maximal solutions u and $v \in C([0, T_0], H^s)$, where $T_0 < T_{\text{max}}$. By Sobolev embedding, $H^s(\mathbb{R}^n) \subset L^p(\mathbb{R}^n)$, where $\frac{1}{p} = \frac{1}{2} - \frac{s}{n}$, so that $||u - v||_{L^{\infty}_t([0, T_0], L^p)}$ is well-defined and finite. We will prove that

$$||u - v||_{L^{\infty}_{t}([0,T],L^{p}_{x})} \leq c ||u - v||_{L^{\infty}_{t}([0,T],L^{p}_{x})},$$

for some $T \in (0, T_0]$ and $c \in (0, 1)$, so that u(t) = v(t) in [0, T].

By Duhamel's formula and Theorem 2.1,

$$\|u - v\|_{L^{\infty}_{t}([0,T],L^{p})} = \left\| \int_{0}^{t} e^{i(t-\tau)\Delta} (|u|^{\alpha}u - |v|^{\alpha}v)(\cdot,\tau)(x) d\tau \right\|_{L^{\infty}_{t}([0,T],L^{p})}$$

$$\leq C \||u|^{\alpha}u - |v|^{\alpha}v\|_{L^{q}_{t}([0,T],L^{r}_{x})},$$

where r, p and q satisfy the conditions of Theorem 2.1. Now it is easy to calculate that

$$\left| |u|^{\alpha}u - |v|^{\alpha}v \right| \leq C|u - v|\left(|u|^{\alpha} + |v|^{\alpha}\right),$$

so that by Hölder's inequality,

$$\begin{aligned} \|u - v\|_{L^{\infty}_{t}([0,T],L^{p})} &\leq C \|u - v\|_{L^{\frac{qp}{r}}_{t^{r}}L^{p}_{x}} \||u|^{\alpha} + |v|^{\alpha} \|_{L^{q\bar{p}}_{t}L^{r\bar{p}}_{x}} \\ &\leq C \|u - v\|_{L^{\frac{qp}{r}}_{t^{r}}L^{p}_{x}} (\|u\|^{\alpha}_{L^{q\bar{p}\alpha}_{t}L^{r\bar{p}\alpha}_{x}} + \|v\|^{\alpha}_{L^{q\bar{p}\alpha}_{t}L^{r\bar{p}\alpha}_{x}}). \end{aligned}$$

where $\frac{r}{p} + \frac{1}{\tilde{p}} = 1$.

One can check that by the hypothesis, $\frac{n+2}{n-2s} \leq \alpha + 1 \leq \frac{2n}{n-2s}$, so that letting $r = \frac{2n}{(\alpha+1)(n-2s)}$, we have that $r \in [1, \frac{2n}{n+2}]$ and $r \tilde{p}\alpha = p$. Now the restriction $\alpha < \alpha_s$ of the hypothesis corresponds to the condition $\frac{1}{r} - \frac{2}{n} < \frac{1}{p}$ that appears in Theorem 2.1, and $\alpha \leq \frac{2+4s-4s/n}{n-2s}$ corresponds to the condition $\frac{1}{p} \leq \frac{n}{n-2}(1-\frac{1}{r})$. It can also be calculated that $\frac{qp}{r}$ and $q \tilde{p}\alpha$ are finite, so that by Hölder,

$$\|u - v\|_{L^{\infty}_{t}([0,T],L^{p})} \leq CT^{p} \|u - v\|_{L^{\infty}_{t}([0,T],L^{p}_{x})} \left(\|u\|_{L^{\infty}_{t}([0,T],L^{p}_{x})}^{\alpha} + \|v\|_{L^{\infty}_{t}([0,T],L^{p}_{x})}^{\alpha}\right)$$

for some $\beta > 0$. Choosing T sufficiently small,

$$CT^{\beta} \big(\|u\|_{L^{\infty}_{t}([0,T_{0}],L^{p}_{x})}^{\alpha} + \|v\|_{L^{\infty}_{t}([0,T_{0}],L^{p}_{x})}^{\alpha} \big) \leq c < 1,$$

so that

$$\|u - v\|_{L^{\infty}_{t}([0,T],L^{p}_{x}(\mathbb{R}^{n}))} \leq c \|u - v\|_{L^{\infty}_{t}([0,T],L^{p}_{x}(\mathbb{R}^{n}))}$$

as required.

We note that the choice of *T* depended only on $||u||_{L_t^{\infty}([0,T_0],L_x^p)}^{\alpha}$ and $||v||_{L_t^{\infty}([0,T_0],L_x^p)}^{\alpha}$, so that we can iterate the process, considering u(T) = v(T) to be the new initial datum, in order to reach T_0 . As we can choose T_0 to be arbitrarily close to T_{max} , we see that the solutions are equal for all time $t \in [0, T_{\text{max}})$, and we are done. \Box

By a counterexample of Vilela [10], the estimate in Theorem 2.1 cannot hold when $\frac{1}{p} + \frac{1}{r} > 1 + \frac{1}{n}$. Thus, an extension of Theorem 2.1, combined with the previous argument, could only weaken the restriction in Theorem 1.1 to $\alpha < \min(\frac{2+4s}{n-2s}, \alpha_s)$. This would correspond to unconditional well-posedness for subcritical NLS_{s, α} in the range $s \in [\frac{1}{2}, 1]$. In particular, subcritical unconditional well-posedness in L^2 is well beyond the capabilities of these arguments.

Acknowledgements

Thanks to Sahbi Keraani and Ana Vargas for a fraught conversation concerning the definition of well-posedness. Thanks also to Thomas Duyckaerts for the French translation of the abstract.

References

- [1] T. Cazenave, F.B. Weissler, The Cauchy problem for the nonlinear Schrödinger equation in H^1 , Manuscripta Math. 61 (4) (1988) 477–494.
- [2] T. Cazenave, F.B. Weissler, The Cauchy problem for the critical nonlinear Schrödinger equation in H^s, Nonlinear Anal. 14 (10) (1990) 807–836.
- [3] T. Cazenave, F.B. Weissler, Rapidly decaying solutions of the nonlinear Schrödinger equation, Comm. Math. Phys. 147 (1) (1992) 75-100.
- [4] G. Furioli, F. Planchon, E. Terraneo, Unconditional well-posedness for semilinear Schrödinger and wave equations in H^s, in: Harmonic Analysis at Mount Holyoke, in: Contemp. Math., vol. 320, Amer. Math. Soc., Providence, RI, 2003, pp. 147–156.
- [5] G. Furioli, E. Terraneo, Besov spaces and unconditional well-posedness for the nonlinear Schrödinger equation in $\dot{H}^{s}(\mathbb{R}^{n})$, Commun. Contemp. Math. 5 (3) (2003) 349–367.
- [6] J. Ginibre, G. Velo, The global Cauchy problem for the nonlinear Schrödinger equation revisited, Ann. Inst. H. Poincaré Anal. Non Linéaire 2 (4) (1985) 309–327.
- [7] T. Kato, On nonlinear Schrödinger equations. II. H^s-solutions and unconditional well-posedness, J. Anal. Math. 67 (1995) 281–306.
- [8] M. Keel, T. Tao, Endpoint Strichartz estimates, Amer. J. Math. 120 (5) (1998) 955-980.
- [9] R.S. Strichartz, Restrictions of Fourier transforms to quadratic surfaces and decay of solutions of wave equations, Duke Math. J. 44 (3) (1977) 705–714.
- [10] M.C. Vilela, Inhomogeneous Strichartz estimates for the Schrödinger equation, Trans. Amer. Math. Soc. 359 (5) (2007) 2123–2136 (electronic).
- [11] K. Yajima, Existence of solutions for Schrödinger evolution equations, Comm. Math. Phys. 110 (3) (1987) 415-426.