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Abstract

Using the λ and μ functional introduced by Perelman, we prove that the compact blow-up limit of a Ricci flow which generates
singularities at finite time must be a shrinking Ricci soliton. To cite this article: Z.-l. Zhang, C. R. Acad. Sci. Paris, Ser. I 345
(2007).
© 2007 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Résumé

Les limites d’explosion compactes en temps fini de singularités du flot de Ricci sont des solitons « rapetissés ». Utilisant
les fonctionnelles λ et μ introduites par Perelman, nous démontrons que les limites d’explosion compactes, en temps fini, du flot de
Ricci engendrent des singularities de type solitons « rapetissés ». Pour citer cet article : Z.-l. Zhang, C. R. Acad. Sci. Paris, Ser. I
345 (2007).
© 2007 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

In this Note, we consider the solutions to the following Ricci flow equation on a closed manifold M :

∂

∂t
g(t) = −2 Ric

(
g(t)

)
, (1)

where Ric(g(t)) is the Ricci tensor of the metric g(t). In [1], Hamilton introduced the Ricci flow equation and proved
that for any given initial metric g(0), the solution will exists uniquely for all time, unless the curvature blow ups at
some finite time.

A Ricci soliton is a solution to Eq. (1) such that g(t) changes by diffeomorphisms and rescalings, that’s, g(t) =
α(t)φ(t)∗g0 for positive constants α(t) and a family of diffeomorphisms φ(t). A soliton is called shrinking, steady or
expanding, if α′ < 0,= 0 or > 0 correspondingly. It’s known that a compact steady (expanding resp.) Ricci soliton is
Ricci flat (negative Einstein resp.), see [3,5] for example.
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An important distribution of [5] is showing that the Ricci flow is a gradient flow, with its fixed points (modulo
diffeomorphisms and rescalings) exactly the Ricci solitons. So, generally, we hope the following theorem holds, and,
in fact, we confirm it in this Note:

Theorem 1.1 (Main theorem). Let g(t), t ∈ [0, T ), be a maximal solution to the Ricci flow equation on a closed
manifold M with singular time T < ∞. Let tk → T be a sequence of times such that Qk = |Rm|(pk, tk) → ∞. If the
rescaled sequence (M,Qkg(Q−1

k t + tk)) converges in the C∞ sense to a closed ancient solution (M,g∞(t)) to the
Ricci flow, then g∞(t) must be a shrinking Ricci soliton.

Here, |Rm|(pk, tk) denotes the norm of Riemannian curvature tensor of g(tk) at pk . The proof uses the λ and μ

functional in [5]. See Section 1 for a definition and some properties of them. As for the definition and proof of the
convergence of Ricci flow solutions, see [2,5].

On the other hand, if g(t) exists for all time and tk → ∞ is a sequence of times such that g(tk) converge, modulo
the rescalings and diffeomorphisms, to a metric g∞ on M , then by the monotonicity of λ functional along the Ricci
flow [5], g∞ must be Einstein of negative or zero type. So we have

Theorem 1.2. Let g(t), t ∈ [0, T ), be a maximal solution to the Ricci flow equation on a closed manifold M . Suppose
there is a sequence of times tk → T and positive numbers αk such that the rescaled metrics αkg(tk) converge in the
C∞ sense to a metric g∞ on M , then g∞ must be a Ricci soliton metric. If T = ∞, then g∞ is in fact Einstein.

By the classification of three dimensional compact solitons [3], if M is of dimension three, then M itself is diffeo-
morphic to a space of constant curvature.

We provide some preliminaries about the λ and μ functional in Section 2. Then we prove the main theorem in
Section 3.

2. Basics about λ and μ functionals

In this section, we recall some basics about the λ, μ and ν functionals introduced by Perelman [5], and derive some
estimate about them which we will use in the next section.

Given a closed Riemannian manifold (M,g), define λ(g) = inf{∫
M

(R + |∇f |2)e−f dv| ∫
M

e−f dv = 1} and for
τ > 0, define μ(g, τ) = inf{∫

M
[τ(R+|∇f |2)+f −n](4πτ)−n/2e−f dv| ∫

M
(4πτ)−n/2e−f dv = 1}, where R denotes

the scalar curvature of g, the infirmum is taken over functions f ∈ C∞(M). It’s known that λ is just the lowest
eigenvalue of the operator −4	 + R. By a result of Rothaus [6], for each τ > 0, there is a smooth minimizer of
μ(g, τ). The functional ν is defined by ν(g) = infτ>0 μ(g, τ). ν(g) is always less than 0 and may equal −∞ by the
following Corollary 2.2.

Lemma 2.1. We have the upper bound

μ(g, τ) � τλ(g) + Vol(g) − n

2
ln(4πτ) − n, (2)

and the lower bound for τ > n
8 ,

μ(g, τ) � λτ − n

2
ln(4πτ) − n − n

8
(λ − infR) − n lnCs, (3)

where Cs denotes the Sobolev constant for g such that ‖φ‖
L

2n
n−2 (g)

� Cs‖φ‖H 1,2(g) for all φ ∈ C∞(M).

Proof. By definition, set u = (4πτ)−n/4e−f/2, then
∫
M

u2 dv = 1 and so∫
M

[
τ
(
R + |∇f |2) + f − n

]
(4πτ)−n/2e−f dv = τ

∫
M

(
Ru2 + 4|∇u|2) dv −

∫
M

u2 lnu2 dv − n

2
ln(4πτ) − n

� τ

∫ (
Ru2 + 4|∇u|2)dv + Vol(g) − n

2
ln(4πτ) − n,
M
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where we used that −t ln t � 1 for all t > 0. The upper bound follows by choosing f such that u is the eigenfunction
of the first eigenvalue of −4	 + R.

As for the lower bound, let f̄ be the minimizer of μ(g, τ) for fixed τ > 0 and set ū = (4πτ)−n/4e−f̄ /2. We estimate
the term − ∫

M
ū2 ln ū2 dv by

−
∫
M

ū2 ln ū2 dv = −n − 2

2

∫
M

ū2 ln ū
4

n−2 dv � −n ln‖ū‖
L

2n
n−2 (g)

� −n

2
ln

(
1 +

∫
M

|∇ū|2 dv

)
− n lnCs,

where we used the Jensen and Sobolev inequality in the first and the second inequality. Then we have

μ(g, τ) = τ

∫
M

(
Rū2 + 4|∇ū|2)dv −

∫
M

ū2 ln ū2 dv − n

2
ln(4πτ) − n

� τ

∫
M

(
Rū2 + 4|∇ū|2)dv − n

2
ln

(
1 +

∫
M

|∇ū|2 dv

)
− n

2
ln(4πτ) − n − n lnCs

�
(

τ − n

8

)∫
M

(
Rū2 + 4|∇ū|2)dv + n

8

∫
M

Rū2 dv − n

2
ln(4πτ) − n − n lnCs,

which proves the lower bound if we set τ > n
8 . �

Corollary 2.2. We have ν(g) 	= −∞ iff λ(g) > 0.

Proof. It is easily seen that μ(g, τ) is continuous for τ > 0, since μ(g, τ) is always attainable by some smooth
function by [6]. Now the result follows from above lemma and Claim 3.1 of [5], which says that μ(g, τ) → 0 as
τ → 0+. �

It follows that ν functional is valuable only when λ > 0. Fortunately, the assumption of our main theorem implies
the positivity of λ along the Ricci flow. This fact will be proved in the next section.

Corollary 2.3. If λ(g) � 0, then μ(g, τ) � ln Vol(g) − n
2 ln(4πτ) − n + 1.

Proof. First note that μ(αg,ατ) = μ(g, τ) for any α > 0 by a direct computation. Set Q = Vol(g)−2/n, then by the
above lemma

μ(g, τ) = μ(Qg,Qτ) � Qτλ(Qg) − n

2
ln(4πQτ) − n + Vol(Qg) � ln Vol(g) − n

2
ln(4πτ) − n + 1. �

Finally, we state a property about the monotonicity of ν functional along the Ricci flow, due to Perelman [5,4]:

Proposition 2.4. Let g(t) be a solution to the Ricci flow equation (1) on a closed manifold M . Denote τ(t) = T − t

for some constant T > 0, then μ(g(t), τ (t)) is non-decreasing whenever it makes sense. Moreover, the monotonicity
is strict unless g(t) is a shrinking Ricci soliton.

If λ(g(0)) > 0, then ν(g(t)) increases strictly unless g(t) is a shrinking Ricci soliton.

3. Compact shrinking Ricci solitons as blow-up limits

In this section we will prove our main theorem. The idea is to use the monotonicity of ν functional along the Ricci
flow. We begin with a lemma:

Lemma 3.1. Let g(t), t ∈ [0, T ), be a solution to the Ricci flow equation (1) on a closed manifold M . If λ(g(t)) � 0 for
all t , then there exist constants c1, c2 > 0 depending only on g(0), such that for all t � 0 we have Vol(g(t)) � c1e−c2t .
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Proof. By Proposition 2.4 and Lemma 2.1, we have

μ

(
g(t),

n

8

)
� μ

(
g(0),

n

8
+ t

)
� λ

(
g(0)

)
t − n

2
ln

(
4π

(
t + 8

n

))
+ n

8
infR(· ,0) − n − n lnCs

(
g(0)

)

�
(

λ
(
g(0)

) − n2

16

)
t − n

2
ln

(
32

n
π

)
+ n

8
infR(· ,0) − n − n lnCs

(
g(0)

)
,

where Cs(g(0)) denotes the Sobolev constant of (M,g(0)). Setting c1 = exp( n
8 infR(· ,0)+ n

2 ln n2

64 −n lnCs(g(0))−
1) and c2 = −λ(g(0)) + n2

16 , and substituting τ = n
8 into Corollary 2.3, we obtain the estimate Vol(g(t)) �

exp(μ(g(t), n
8 ) + n

2 ln( n
2 π) + n − 1) � c1 exp(−c2t). �

Corollary 3.2. Let g(t), t ∈ [0, T ), be a maximal solution to the Ricci flow equation (1) on a closed manifold M with
T < ∞. If λ(g(t)) � 0 for all t , then any blow-up limit is noncompact.

Proof. Suppose we have a blow-up sequence (M,Qkg(Q−1
k t + tk),pk) of Ricci flow solutions with Qk → ∞. By

assumption and above lemma, we have that the rescaled volume at time zero equals Q
n/2
k Vol(g(tk)) → ∞. So the

limit has infinite volume and consequently can’t be compact. �
Now we are ready to give a

Proof of the Main theorem. By above corollary, we may assume that λ(g(0)) > 0. So Proposition 2.4 uses and there
is a limit σ = limt→T − ν(g(t)) � 0. Then for any t ∈ (−∞,0], by the smooth convergence,

ν
(
g∞(t)

) = lim
k→∞ν

(
Qkg

(
Q−1

k t + tk
)) = lim

k→∞ν
(
g
(
Q−1

k t + tk
)) = lim

t→T − ν
(
g(t)

) = σ.

That is, the ν functional is constant on the limit flow. Then Corollary 2.2 and Proposition 2.4 imply that g∞(t) must
be a shrinking Ricci soliton. �
Proof of Theorem 1.2. By our main theorem, it suffice to consider the case T = ∞. By Proposition 1.2 of [5],
λ(g(t)) � 0 for all time. Denote by λ̄(g(t)) = λ(g(t))Vol(g(t))2/n the normalized λ value along the Ricci flow, then
by Claim 2.3 of [5], λ̄(g(t)) increases in t and stays constant only when g(t) is Einstein of negative or zero type.
The curvature of αkg(tk) is uniformly bounded since αkg(tk) → g∞ smoothly. So from the evolution of the curvature
∂
∂t

|Rm|2 � 	|Rm|2 +C|Rm|2, the Ricci flow gk(t) = αkg(α−1
k t + tk) exists on a time interval [0, δ] for δ independent

of k. Now Hamilton’s compactness theorem for Ricci flow solutions [2] shows that gk(t) → g∞(t), t ∈ [0, δ), in
C∞ sense. But λ̄(g∞(t)) ≡ limt→∞ λ̄(g(t)) is a constant � 0, so g∞ must be Einstein of negative or zero type by
arguments in [5]. �
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