

Available online at www.sciencedirect.com

C. R. Acad. Sci. Paris, Ser. I 345 (2007) 527-530

COMPTES RENDUS MATHEMATIQUE

http://france.elsevier.com/direct/CRASS1/

Analyse numérique

Estimation de l'erreur pour l'interpolation vectorielle par les div-rot splines sous tension

Mohammed-Najib Benbourhim^a, Abderrahman Bouhamidi^b

^a Institut de mathématiques de Toulouse, Université Paul-Sabatier, 31062 Toulouse cedex 9, France ^b L.M.P.A, CNRS-FR2956, Université du littoral côte d'opale, 50, rue F. Buisson, 62228 Calais cedex, France

Reçu le 3 juin 2007 ; accepté après révision le 28 septembre 2007

Disponible sur Internet le 31 octobre 2007

Présenté par Philippe G. Ciarlet

Résumé

On donne quelques résultats sur l'estimation de l'erreur et la convergence pour l'interpolation vectorielle de type div-rot sous tension de fonctions appartenant aux espaces vectoriels classiques de Sobolev dans un domaine borné à frontière lipschitzienne. *Pour citer cet article : M.-N. Benbourhim, A. Bouhamidi, C. R. Acad. Sci. Paris, Ser. I 345 (2007).* © 2007 Académie des sciences. Publié par Elsevier Masson SAS. Tous droits réservés.

Abstract

Error estimates for vectorial interpolating div-rot splines under tension. In this Note, we give some results on error estimates and convergence for interpolation by div-rot spline under tension in the classical vectorial Sobolev space on an open bounded set with a Lipschitz-continuous boundary. *To cite this article: M.-N. Benbourhim, A. Bouhamidi, C. R. Acad. Sci. Paris, Ser. I 345* (2007).

© 2007 Académie des sciences. Publié par Elsevier Masson SAS. Tous droits réservés.

1. Interpolation par les div-rot splines sous tension

L'approximation vectorielle par les splines sous tension minimisant une énergie de type div-rot a été étudiée dans [2]. L'énergie proposée est donnée en fonction de deux paramètres qui permettent de contrôler la divergence et le rotationnel du champs de vecteurs à approcher. Le problème d'approximation par des splines minimisant des énergies de type div-rot a été étudié par d'autres auteurs [1,5,6] et ont été utilisées avec un certain succès dans plusieurs applications liées à la renconstruction de champs de vecteurs en météorologie, flow optique, etc. (cf. [1,8,4,9,10]). Dans cette Note, on propose une étude sur l'estimation de l'erreur et la convergence. Un tel résultat a été obtenu pour le cas scalaire dans [3].

Soit m > 0 un entier et $\tau > 0$ un paramètre, dit de tension. On considère l'espace $X^m(\mathbb{R}^3)$ donné par $X^m(\mathbb{R}^3) = \{u \in \mathcal{D}'(\mathbb{R}^3) \mid D^\alpha u \in L^2(\mathbb{R}^3) \text{ pour } |\alpha| = m, m+1\}$, où $\mathcal{D}'(\mathbb{R}^3)$ est l'espace classique des distributions et

Adresses e-mail: bbourhim@cict.fr (M.-N. Benbourhim), bouhamidi@lmpa.univ-littoral.fr (A. Bouhamidi).

¹⁶³¹⁻⁰⁷³X/\$ – see front matter © 2007 Académie des sciences. Publié par Elsevier Masson SAS. Tous droits réservés. doi:10.1016/j.crma.2007.10.002

$$D^{\alpha}u = \frac{\partial^{|\alpha|}u}{\partial x_1^{\alpha_1} \partial x_2^{\alpha_2} \partial x_3^{\alpha_3}}$$

désigne la dérivée partielle. On munit $X^m(\mathbb{R}^3)$ du semi-produit scalaire

$$[u|v]_{m,\tau,\mathbb{R}^3} = \sum_{|\alpha|=m+1} \frac{(m+1)!}{\alpha!} \int_{\mathbb{R}^3} D^{\alpha} u(x) D^{\alpha} v(x) \, \mathrm{d}x + \tau^2 \sum_{|\alpha|=m} \frac{m!}{\alpha!} \int_{\mathbb{R}^3} D^{\alpha} u(x) D^{\alpha} v(x) \, \mathrm{d}x.$$
(1)

La semi-norme associée à (1) est notée $[u]_{m,\tau,\mathbb{R}^3} = \sqrt{[u|u]}_{m,\tau,\mathbb{R}^3}$ et le noyau associé à (1) est l'espace des polynômes de degré $\leq m - 1$ noté $\Pi_{m-1}(\mathbb{R}^3)$. On introduit l'espace $\mathcal{V}_1^m(\mathbb{R}^3;\mathbb{R}^3) = [X^m(\mathbb{R}^3)]^3$, dans lequel, on considère le semi-produit scalaire et la semi-norme associée

$$[\mathbf{u}|\mathbf{v}]_{m,\tau,\mathbb{R}^3} = \sum_{i=1}^{3} [u_i|v_i]_{m,\tau,\mathbb{R}^3}, \qquad [\mathbf{u}]_{m,\tau,\mathbb{R}^3} = \sqrt{[\mathbf{u}|\mathbf{u}]}_{m,\tau,\mathbb{R}^3}, \tag{2}$$

pour $\mathbf{u} = (u_1, u_2, u_3)$ et $\mathbf{v} = (v_1, v_2, v_3)$ dans $\mathcal{V}_1^m(\mathbb{R}^3; \mathbb{R}^3)$. Il est évident que le noyau associé à (2) dans $\mathcal{V}_1^m(\mathbb{R}^3; \mathbb{R}^3)$ est l'espace noté $\Pi_{m-1}(\mathbb{R}^3; \mathbb{R}^3)$ des polynômes vectoriels dont les trois composantes sont dans $\Pi_{m-1}(\mathbb{R}^3)$. La proposition suivante donne quelques propriétés topologiques de l'espace $\mathcal{V}_1^m(\mathbb{R}^3; \mathbb{R}^3)$:

Proposition 1.1.

- (i) L'espace $\mathcal{V}_1^m(\mathbb{R}^3; \mathbb{R}^3)$ muni du semi-produit scalaire (2) et de la semi-norme associée est un espace semihilbertien.
- (ii) Pour tout ouvert borné Ω de \mathbb{R}^3 , l'espace $\mathcal{V}_1^m(\mathbb{R}^3; \mathbb{R}^3)$ muni du produit scalaire et de la norme associée suivants, pour $\mathbf{u} = (u_1, u_2, u_3)$ et $\mathbf{v} = (v_1, v_2, v_3)$,

$$\llbracket \mathbf{u} | \mathbf{v} \rrbracket_{m,\tau,\mathbb{R}^3} = \llbracket \mathbf{u} | \mathbf{v} \rrbracket_{m,\tau,\mathbb{R}^3} + \sum_{i=1}^3 \int_{\Omega} u_i v_i \, \mathrm{d}x \quad et \quad \llbracket \mathbf{u} \rrbracket_{m,\tau,\mathbb{R}^3} = \sqrt{\llbracket \mathbf{u} | \mathbf{u} \rrbracket}_{m,\tau,\mathbb{R}^3},\tag{3}$$

est un espace de Hilbert et sa topologie est indépendante du choix de Ω .

(iii) L'inclusion $\mathcal{V}_1^m(\mathbb{R}^3; \mathbb{R}^3) \hookrightarrow H^{m+1}_{\text{loc}}(\mathbb{R}^3; \mathbb{R}^3)$ est à injection continue et par conséquent l'inclusion $\mathcal{V}_1^m(\mathbb{R}^3; \mathbb{R}^3) \hookrightarrow \mathcal{C}^{m-1}(\mathbb{R}^3; \mathbb{R}^3)$ est aussi à injection continue.

Désormais, on supposera que $m \ge 2$. Soit $\rho > 0$ un paramètre donné. On considère les formes bilinéaires définies dans $\mathcal{V}_1^m(\mathbb{R}^3; \mathbb{R}^3)$ par

$$D_{m,\tau}(\mathbf{u}, \mathbf{v}) = [\operatorname{div} \mathbf{u} | \operatorname{div} \mathbf{v}]_{m-1,\tau,\mathbb{R}^3},$$

$$R_{m,\tau}(\mathbf{u}, \mathbf{v}) = \sum_{i=1}^3 [(\operatorname{rot} \mathbf{u})_i | (\operatorname{rot} \mathbf{v})_i]_{m-1,\tau,\mathbb{R}^3}$$

et

$$I_{m,\tau,\rho}(\mathbf{u},\mathbf{v}) = \rho D_{m,\tau}(\mathbf{u},\mathbf{v}) + R_{m,\tau}(\mathbf{u},\mathbf{v}).$$

Les notations div \mathbf{u} et rot \mathbf{u} désignent respectivement l'opérateur divergence et l'opérateur rotationnel, et $(rot \mathbf{u})_i$ désigne la ième composante de rot \mathbf{u} . On considère les espaces suivants :

$$\mathcal{V}_2^m(\mathbb{R}^3;\mathbb{R}^3) = \left\{ \mathbf{u} \in \mathcal{V}_1^m(\mathbb{R}^3;\mathbb{R}^3) \mid \text{rot}\,\mathbf{u} = 0 \right\} \quad \text{et} \quad \mathcal{V}_3^m(\mathbb{R}^3;\mathbb{R}^3) = \left\{ \mathbf{u} \in \mathcal{V}_1^m(\mathbb{R}^3;\mathbb{R}^3) \mid \text{div}\,\mathbf{u} = 0 \right\}$$

Soit $\mathcal{A} = \{x_1, \ldots, x_N\} \subset \Omega$ un ensemble fini de N points distincts avec $N \ge \dim \Pi_{m-1}(\mathbb{R}^3)$. On suppose que \mathcal{A} contient un sous-ensemble Π_{m-1} -unisolvent. Cela équivaut au fait que chaque polynôme de $\Pi_{m-1}(\mathbb{R}^3)$ qui s'annule sur \mathcal{A} est identiquement nul.

Afin de pouvoir étudier simultanément trois problèmes d'approximation, on introduit l'indice $\ell = 1, 2$ ou 3. Pour $\mathbf{u} \in \mathcal{V}_{\ell}^{m}(\mathbb{R}^{3}; \mathbb{R}^{3})$, on considère le problème d'approximation suivant :

$$\min_{\mathbf{v}\in\mathcal{C}_{\mathcal{A},\ell}(\mathbf{u})} J_{m,\tau,\rho}(\mathbf{v}),\tag{4}$$

528

où $C_{\mathcal{A},\ell}(\mathbf{u}) = \{\mathbf{w} \in \mathcal{V}_{\ell}^m(\mathbb{R}^3; \mathbb{R}^3) \mid \mathbf{w}(a) = \mathbf{u}(a), \forall a \in \mathcal{A}\}$. Il a été montré dans [2], que le problème (4) admet une solution unique dans $\mathcal{V}_{\ell}^m(\mathbb{R}^3; \mathbb{R}^3)$, notée $S^{\mathcal{A},\ell}\mathbf{u}$. Cette solution a été donnée explicitement dans [2], elle est l'unique élément de $C_{\mathcal{A},\ell}(\mathbf{u})$ caractérisé par la relation, $J_{m,\tau,\rho}(S^{\mathcal{A},\ell}\mathbf{u},\mathbf{v}) = 0$, pour tout $\mathbf{v} \in \mathcal{V}_{\ell}^m(\mathbb{R}^3; \mathbb{R}^3)$ qui s'annule en tout point de \mathcal{A} . De plus, pour tout $\mathbf{p} \in \Pi_{m-1,\ell}(\mathbb{R}^3; \mathbb{R}^3)$, on a la propriété de reproduction $S^{\mathcal{A},\ell}\mathbf{p} = \mathbf{p}$.

Pour Ω ouvert borné de \mathbb{R}^3 , on considère les espaces suivants :

$$\mathcal{H}_{1}^{m}(\Omega; \mathbb{R}^{3}) = H^{m+1}(\Omega; \mathbb{R}^{3}) = \left[H^{m+1}(\Omega)\right]^{3}, \qquad \Pi_{m-1,1}(\Omega; \mathbb{R}^{3}) = \Pi_{m-1}(\Omega; \mathbb{R}^{3}) = \left[\Pi_{m-1}(\Omega)\right]^{3}, \\ \mathcal{H}_{2}^{m}(\Omega; \mathbb{R}^{3}) = \left\{\mathbf{u} \in \mathcal{H}_{1}^{m}(\Omega; \mathbb{R}^{3}) \mid \operatorname{rot} \mathbf{u} = 0\right\}, \qquad \Pi_{m-1,2}(\Omega; \mathbb{R}^{3}) = \left\{\mathbf{u} \in \Pi_{m-1}(\Omega; \mathbb{R}^{3}) \mid \operatorname{rot} \mathbf{u} = 0\right\}, \\ \mathcal{H}_{3}^{m}(\Omega; \mathbb{R}^{3}) = \left\{\mathbf{u} \in \mathcal{H}_{1}^{m}(\Omega; \mathbb{R}^{3}) \mid \operatorname{div} \mathbf{u} = 0\right\}, \qquad \Pi_{m-1,3}(\Omega; \mathbb{R}^{3}) = \left\{\mathbf{u} \in \Pi_{m-1}(\Omega; \mathbb{R}^{3}) \mid \operatorname{div} \mathbf{u} = 0\right\}.$$
(5)

On considère la semi-norme $[\cdot]_{m,\tau,\Omega}$ définie sur l'espace $\mathcal{H}_1^m(\Omega;\mathbb{R}^3)$ associée au semi-produit scalaire

$$[\mathbf{f}|\mathbf{g}]_{m,\tau,\Omega} = \sum_{i=1}^{3} [f_i|g_i]_{m,\tau,\Omega}, \qquad [\mathbf{f}]_{m,\tau,\Omega} = \sqrt{[\mathbf{f}|\mathbf{f}]}_{m,\tau,\Omega}, \tag{6}$$

avec $\mathbf{f} = (f_1, f_2, f_3), \mathbf{g} = (g_1, g_2, g_3)$ et

$$[f_i|g_i]_{m,\tau,\Omega} = \sum_{|\alpha|=m+1} \frac{(m+1)!}{\alpha!} \int_{\Omega} D^{\alpha} u(x) D^{\alpha} v(x) \,\mathrm{d}x + \tau^2 \sum_{|\alpha|=m} \frac{m!}{\alpha!} \int_{\Omega} D^{\alpha} u(x) D^{\alpha} v(x) \,\mathrm{d}x.$$
(7)

Proposition 1.2. Soit Ω un ouvert borné de \mathbb{R}^3 à frontière lipschitzienne, alors l'opérateur R_Ω de restriction à Ω est linéaire et continu de $\mathcal{V}_{\ell}^m(\mathbb{R}^3;\mathbb{R}^3)$ dans $\mathcal{H}_{\ell}^m(\Omega;\mathbb{R}^3)$. De plus, il existe un opérateur d'extension $E_{m,\ell}$ linéaire et continu de $\mathcal{H}_{\ell}^m(\Omega;\mathbb{R}^3)$ dans $\mathcal{V}_{\ell}^m(\mathbb{R}^3;\mathbb{R}^3)$ tel que $R_\Omega E_{m,\ell}\mathbf{u} = \mathbf{u}$ pour tout \mathbf{u} dans $\mathcal{H}_{\ell}^m(\Omega;\mathbb{R}^3)$.

Maintenant, pour tout $\mathbf{f} \in \mathcal{H}^m_{\ell}(\Omega; \mathbb{R}^3)$, on considère le problème d'approximation suivant :

$$\min_{\mathbf{v}\in\mathcal{C}_{\Omega,\ell}(\mathbf{f})} J_{m,\tau,\rho}(\mathbf{v}),\tag{8}$$

où $\mathcal{C}_{\Omega,\ell}(\mathbf{f}) = {\mathbf{w} \in \mathcal{V}_{\ell}^m(\mathbb{R}^3; \mathbb{R}^3) | R_{\Omega} \mathbf{w} = \mathbf{f}}$. La proposition suivante a été établie dans [2] :

Proposition 1.3. Pour tout $\mathbf{f} \in \mathcal{H}_{\ell}^{m}(\Omega; \mathbb{R}^{3})$, le problème (8) admet une solution unique dans $\mathcal{V}_{\ell}^{m}(\mathbb{R}^{3}; \mathbb{R}^{3})$, notée $S^{\Omega,\ell}\mathbf{f}$. Cette solution est caractérisée par la relation, $J_{m,\tau,\rho}(S^{\Omega,\ell}\mathbf{f}, \mathbf{v}) = 0$, pour tout $\mathbf{v} \in \mathcal{V}_{\ell}^{m}(\mathbb{R}^{3}; \mathbb{R}^{3})$ vérifiant $R_{\Omega}\mathbf{v} = 0$. De plus, pour tout $\mathbf{p} \in \Pi_{m-1,\ell}(\Omega; \mathbb{R}^{3})$, on a $S^{\Omega,\ell}\mathbf{p} = \mathbf{p}$, dans Ω .

2. Estimation de l'erreur et convergence

Dans cette section, on donne des résultats sur l'estimation de l'erreur et la convergence dans l'espace de Sobolev $W^{k,p}(\Omega; \mathbb{R}^3)$. On suppose que, Ω est un ouvert borné connexe de \mathbb{R}^3 à frontière lipschitzienne (au sens de Necas [7]). On considère la semi-norme usuelle définie sur $W^{k,p}(\Omega; \mathbb{R}^3)$ par :

$$|\mathbf{f}|_{k,p,\Omega} = \sum_{i=1}^{3} \left(\sum_{|\alpha|=k} \int_{\omega} |D^{\alpha} f_{i}(x)|^{p} dx \right)^{1/p}, \text{ avec } \mathbf{f} = (f_{1}, f_{2}, f_{3}).$$

Théorème 2.1. Il existe $h_0 > 0$ (dépendant de Ω et m) tel que pour tout $p \in [2, \infty[$ et pour tout entier k vérifiant $0 \leq k \leq m - \frac{3}{2} + \frac{3}{p}$, il existe une constante C (dépendant de Ω , m, k, p et τ) telle que pour toute fonction $\mathbf{f} = (f_1, f_2, f_3)$ appartenant à $\mathcal{H}^m_{\ell}(\Omega; \mathbb{R}^3)$, $\ell = 1, 2, 3$, et pour tout ensemble fini $\mathcal{A} \subset \overline{\Omega}$ contenant un sous-ensemble $\prod_{m=1}^{m-1}$ -unisolvent et vérifiant $h = \sup_{t \in \overline{\Omega}} \inf_{a \in \mathcal{A}} |t - a| \leq h_0$, on a l'estimation de l'erreur suivante :

$$|\mathbf{f} - S^{\mathcal{A},\ell} S^{\Omega,\ell} \mathbf{f}|_{k,p,\Omega} \leqslant C h^{m-k-\frac{3}{2}+\frac{3}{p}} \sqrt{\frac{\sup(1,\rho)}{\inf(1,\rho)}} [\mathbf{f}]_{m,\tau,\Omega}.$$
(9)

Le théorème suivant donne un résultat de convergence :

Théorème 2.2. Pour $\mathbf{f} = (f_1, f_2, f_3) \in \mathcal{H}^m_{\ell}(\Omega; \mathbb{R}^3)$ on a:

- (i) S^{Ω,ℓ}**f** = lim_{h→0} S^{A,ℓ}S^{Ω,ℓ}**f** dans V^m_ℓ(ℝ³; ℝ³).
 (ii) **f** = lim_{h→0} S^{A,ℓ}S^{Ω,ℓ}**f** dans H^m_ℓ(Ω; ℝ³) et par conséquent dans C^{m-1}(Ω; ℝ³).

A partir des deux théorèmes précédents, on obtient le corollaire suivant :

Corollaire 2.3. Soit $\mathbf{f} = (f_1, f_2, f_3) \in \mathcal{H}_{\ell}^m(\Omega; \mathbb{R}^3)$. Pour tout réel $p \in [2, \infty[$ et tout entier k tel que $0 \le k \le m - \frac{3}{2} + \frac{3}{2$ $\frac{3}{n}$, on a :

$$|\mathbf{f} - S^{\mathcal{A},\ell} S^{\Omega,\ell} \mathbf{f}|_{k,p,\Omega} = o\left(h^{m-k-\frac{3}{2}+\frac{3}{p}}\right), \quad and \ h \to 0.$$

Références

- [1] L. Amodei, M.N. Benbourhim, A vector spline approximation, J. Approx. Theory 67 (1991) 51-79.
- [2] M.N. Benbourhim, A. Bouhamidi, Approximation of vector fields by thin plate splines with tension, J. Approx. Theory 136 (2005) 198-229.
- [3] A. Bouhamidi, Error estimates in Sobolev spaces for interpolating thin plate splines under tension, J. Comput. Appl. Math. 200 (2007) 208-216
- [4] F. Chen, S. Suter, Elastic spline models for human cardiac motion estimation, in: IEEE Nonrigid and Articulated Motion Workshop, Puerto Rico, June 1997, pp. 120-127.
- [5] F. Dodu, C. Rabut, Vectorial interpolation using radial-basis-like functions, Comput. Math. Appl. 43 (3-5) (2002) 393-411.
- [6] D. Handscomb, Local recovery of a solenoidal vector field by an extension of the thin plate spline technique, Numer. Algorithms 5 (1-4) (1993) 121-129.
- [7] J. Necas, Les Méthodes Directes en Théorie des Equations Elliptiques, Masson, Paris, 1967.
- [8] D. Suter, Motion estimation and vector splines, in: Proc. CVPR 94, Seattle, WA, IEEE, June 1994, pp. 939-942.
- [9] D. Suter, F. Chen, Left ventricular motion reconstruction based on elastic vector splines, IEEE Trans. Med. Imag. 19 (4) (April 2000) 295–305.
- [10] C.O.S. Sorzano, P. Thévenaz, M. Unser, Elastic registration of biological images using vector-splines regularization, IEEE Trans. Biomedical Engineering 52 (4) (2005) 652-663.