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Abstract

Under quite general assumptions on k : Rd × R
d → [0,∞), we study integro-differential operators L of the form

(L u)(x) = 2 lim
ε→0

∫
y∈R

d

|y−x|>ε

(
u(y) − u(x)

)
k(x, y)dy. (1)

Our assumptions on k imply that there is α ∈ (0,2) such that k(x, y)|x − y|d+α stays bounded for small |x − y|. Let Ω ⊂ R
d be a

bounded open set. Set DΩ(E ) = L∞(Rd) ∩ H
α/2
loc (Ω). We call a function u ∈ DΩ(E ) L -harmonic in Ω if for any φ ∈ C∞

0 (Ω)

E (u,φ) =
∫∫

Rd×Rd

(
u(y) − u(x)

)(
φ(y) − φ(x)

)
k(x, y)dx dy = 0. (2)

The aim of this Note is to prove local bounds for L -harmonic functions. The main results says that functions u ∈ DB(E ) which
are L -harmonic in the ball B satisfy a priori estimates in Cβ(B ′) for some β > 0 and any B ′ � B. The results can be seen as
a generalization of the so-called De Giorgi–Nash–Moser theory to integro-differential operators of order α ∈ (0,2). To cite this
article: M. Kassmann, C. R. Acad. Sci. Paris, Ser. I 345 (2007).
© 2007 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Résumé

La théorie de De Giorgi pour les opérateurs non locaux. Sous des conditions générales pour k : R
d × R

d → [0,∞), nous
étudions les opérateurs intégro-différentiels L de type (1). Nos conditions pour k impliquent qu’il existe un α ∈ (0,2) tel que

k(x, y)|x − y|d+α reste borné pour de petits |x − y|. Soit Ω ⊂ R
d un ouvert borné. Soit DΩ(E ) = L∞(Rd) ∩ H

α/2
loc (Ω). Une

fonction u ∈ DΩ(E ) est nommée L -harmonique en Ω si pour tout φ ∈ C∞
0 (Ω) E (u,φ) = 0. Le but de cette Note est de trouver

des bornes locales pour des fonctions L -harmoniques. Les principaux resultats démontrent que des fonctions u ∈ DB(E ) qui
sont L -harmoniques dans la boule B satisfont des estimations a priori dans Cβ(B ′) pour un β > 0 et pour tout B ′ � B. Les
résultats de ce travail peuvent être regardés comme une généralisation de la théorie dite De Giorgi–Nash–Moser aux opérateurs
integro-differentiels d’ordre α ∈ (0,2). Pour citer cet article : M. Kassmann, C. R. Acad. Sci. Paris, Ser. I 345 (2007).
© 2007 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.
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1. Introduction

Our aim is to apply the method of De Giorgi to non-local operators and to answer the question of local regularity
for non-local Dirichlet forms. This is the natural next step after boundedness of resolvents has been shown in [3]. Let
k : Rd × R

d → [0,∞), d � 2, be measurable and satisfy

k(x, y) = k(y, x) for almost all x, y ∈ R
d, (3)

ν � k(x, y)|x − y|d+α � ν−1 for almost all x, y ∈ R
d with |x − y| � 1, (4)

k(x, y) � M|x − y|−d−η for almost all x, y ∈ R
d with |x − y| > 1, (5)

for some α ∈ (0,2), ν ∈ (0,1), η > 0, M � 1. The assumptions could be relaxed further. We introduce a method
for proving local estimates of functions u : Rd → R satisfying (L u)(x) = 0 for x ∈ Ω , where L is as in (1) and
Ω ⊂ R

d is a bounded open set. For u,v ∈ Hα/2(Rd) recall the definition of E (u, v) from (2). Set D(E ) = {u ∈
L2(Rd): E (u,u) < ∞}. Under Assumptions (3)–(5), D(E ) = Hα/2(Rd). The tuple (E ,D(E )) is a regular Dirichlet
form.

Definition 1.1. A function u ∈ DΩ(E ) = L∞(Rd) ∩ H
α/2
loc (Ω) is called L -subharmonic in Ω if E (u,φ) � 0 for all

test functions φ ∈ C∞
0 (Ω), φ � 0. A function u ∈ DΩ(E ) is L -superharmonic in Ω if −u is L -subharmonic in Ω .

A function u ∈ DΩ(E ) is L -harmonic in Ω if u and −u are L -subharmonic in Ω , which is equivalent to

E (u,φ) = 0 ∀φ ∈ C∞
0 (Ω). (6)

Note that u ∈ DΩ(E ) implies finiteness of E (u,φ) for any φ ∈ C∞
0 (Ω). Our aim is to sketch the ideas of how

our main result, Theorem 2.6, can be proved. Full details are worked out in [4] and will be published elsewhere. The
following auxiliary result on real numbers can be used as a substitute for integration by parts:

Lemma 1.2. Let a, b > 0, p > 1 and τ1, τ2 � 0. Then

(b − a)
(
τ

p+1
1 a−p − τ

p+1
2 b−p

)
� τ1τ2

p − 1

((
b

τ2

)−p+1
2 −

(
a

τ1

)−p+1
2

)2

− max

{
4,

6p − 5

2

}
(τ2 − τ1)

2
((

b

τ2

)−p+1

+
(

a

τ1

)−p+1)
.

2. Results

Our main result is Theorem 2.6. In order to prove it, we provide estimates of infx∈BR
u(x) from below for non-

negative L -superharmonic functions and prove a priori estimates in Hölder spaces. The following result is a version
of a classical tool used in regularity theory. This tool can be found in many sources, see [2,7,6]. Our result differs from
the classical ones since there is one additional assumption, inequality (9). This assumption takes care of non-local
terms. It is interesting that, despite this additional assumption, Theorem 2.1 still implies Hölder regularity.

Theorem 2.1. There are κ > 0 and γ ∈ (0,1) such for any x0 ∈ R
d , R ∈ (0,1/8), u ∈ DB2R(x0)(E ) satisfying

u is L -superharmonic and non-negative in B2R(x0), (7)∣∣{x ∈ BR(x0): u(x) � 1
}∣∣ � 1

2

∣∣BR(x0)
∣∣, (8)

u(x) − 1 � 1 − 2

(
4
|x − x0|

R

)γ

for almost any x ∈ R
d \ BR(x0), (9)

the following holds: ess-infB R
4

(x0) u � κ . The constants γ, κ depend only on d and on the constants appearing in

assumptions (3)–(5).

We need several auxiliary results before we can prove Theorem 2.1. One key argument in the proof of Theorem 2.1
is the following Morrey–Besov-type inequality for logu:
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Lemma 2.2. For z0 ∈ R
d, s > 0, write Bs instead of Bs(z0). Assume r > 0, ρ ∈ (0, r] satisfy 2r + 4ρ � 1. Assume

u ∈ DB2r
(E ) is L -superharmonic in B2r , u � δ > 0 a.e. in B2r , and∫
Rd\Br+ρ

u(x)k(x, y)dx � 0 for almost any y ∈ Br+ρ. (10)

Then ∫∫
Br×Br

(∑∞
k=1

(logu(y) − logu(x))2k

(2k)!
)

|x − y|−d−α dy dx � cρ−α|Br+ρ | (11)

where c > 0 is independent of u, z0, r, ρ, and δ.

In order to grasp the implication of Lemma 2.2, one can set ρ = r . Inequality (11) implies logu ∈ BMO. The
John-Nirenberg embedding then leads to the following result:

Lemma 2.3. For x0 ∈ R
d, s > 0, write Bs instead of Bs(x0). Let R ∈ (0,1/8). Assume u ∈ DB2R

(E ) is L -super-
harmonic in B2R , u � δ > 0 a.e. in B2R , and∫

Rd\BR

u(x)k(x, y)dx � 0 for almost any y ∈ BR. (12)

Then there exist p̄ ∈ (0,1) and c > 0 such that(
−
∫

BR

u(x)p̄ dx

)1/p̄

dx � c

(
−
∫

BR

u(x)−p̄ dx

)−1/p̄

(13)

where c and p̄ are independent of x0,R,u, and δ.

Note that the constant c in (13) does not depend on values of u outside of B2R(x0) although the operator L
is non-local. The proof of Theorem 2.1 makes also use of Moser’s iteration technique for non-negative exponents.
The following lemma shows how a single iteration step can be obtained. The main technical ingredient is given by
Lemma 1.2.

Lemma 2.4. Assume r > 0, ρ ∈ (0, r) satisfy 2r + 4ρ � 1. For x0 ∈ R
d, s > 0, write Bs instead of Bs(x0). Let p > 1.

Assume u ∈ DB2r
(E ) is L -superharmonic in B2r and satisfies u(x) � δ for almost any x ∈ B2r and some δ > 0. Then∫∫

Br×Br

(u(y)
−p+1

2 − u(x)
−p+1

2 )2

|x − y|d+α
dy dx � c max

{
p − 1

2
,

6(p − 1)2

16

}
ρ−α

∫
Br+ρ

u(x)−p+1 dx, (14)

where c > 0 is independent of u,x0, r, ρ,p, and δ.

As already mentioned, Lemma 2.4 can be iterated in order to estimate the infimum of a positive L -superharmonic
function. The iteration scheme is almost identical to the one in [8]. It results in the following corollary:

Corollary 2.5. Assume R ∈ (0,1/8), μ ∈ (0,1), x0 ∈ R
d . Assume u ∈ DB2R(x0)(E ) is L -superharmonic in B2R(x0)

and satisfies u(x) � δ > 0 for almost any x ∈ BR(x0). Then for any p0 > 0

ess-inf
x∈BμR(x0)

u(x) � c

(
−
∫

BR(x0)

u(x)−p0 dx

)−1/p0

, (15)

where c > 0 is independent of u,x0,R, and δ.

Finally we are in the position to prove Theorem 2.1.

Proof of Theorem 2.1. For s > 0 let us write Bs instead of Bs(x0). First, we assume u(x) � δ for almost any x ∈ BR

and some δ > 0. Since d � 2, there exists R̃ ∈ [R/2,R) such that |{x ∈ BR̃: u(x) � 1}| � 1
8 |BR|, and at the same time

|{x ∈ BR \ B˜: u(x) � 1}| � 1 |BR|. Obviously, R̃ depends on u. Due to Corollary 2.5, for any p0 > 0
R 8
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ess-inf
x∈BR̃/2

u(x) � c

(
−
∫

BR̃

u(x)−p0 dx

)−1/p0

. (16)

Set θ = 4 and S = R̃. A simple observation assures that there is γ ∈ (0,1) with
∫

Rd\BR̃
u(x)k(x, y)dx � 0 for almost

any y ∈ BR̃ . Lemma 2.3 implies that there exist p̄ ∈ (0,1) and c > 0 such that(
−
∫

BR̃

u(x)p̄ dx

)1/p̄

dx � c

(
−
∫

BR̃

u(x)−p̄ dx

)−1/p̄

.

Together with estimate (16), this implies

ess-inf
x∈BR̃/2

u(x) � c

(
1

|BR̃|
∫

BR̃

u(x)p̄ dx

)1/p̄

� c

(
1

|BR̃|
∫

BR̃∩{u�1}
u(x)p̄ dx

)1/p̄

� c

( |BR̃ ∩ {u � 1}|
|BR|

)1/p̄

� c.

As a trivial consequence, ess-infx∈BR/4 u(x) � c and the assertion follows. If there is no δ > 0 with u(x) � δ for almost
any x ∈ BR , we choose v(x) = u(x)+ δ. Next, we apply the same proof to v. In the limit δ → 0, we obtain the desired
result. The proof of Theorem 2.1 is complete. �

Theorem 2.1 implies our main result, Theorem 2.6. This can be seen using the standard technique of oscillation
reduction, see [9]. Concerning other approaches to Hölder regularity for related non-local problems see [5,1]. Here is
our main result:

Theorem 2.6. There exist β ∈ (0,1), c > 0 such that for any x0 ∈ R
d , R ∈ (0,1) and u ∈ DB2R(x0)(E ) which is

L -harmonic in B2R(x0) and almost any x, y ∈ BR(x0)

∣∣u(x) − u(y)
∣∣ � c‖u‖∞

( |x − y|
R

)β

. (17)

The constants β and c depend only on d, ν,M , η and α.

3. Extensions

There are several possible extensions of the results presented above. 1) Assumption (4) can be replaced by the
significantly weaker assumption

ν1{x−y∈M} � k(x, y)|x − y|d+α � ν−1 for almost all x, y ∈ R
d with |x − y| � 1,

where M ⊂ R
d is any set containing 0 and some cone with apex 0. 2) It is obvious that terms of lower order and

so-called right-hand sides can be considered, too. 3) Currently, the author is working on a parabolic analog to Theo-
rem 2.6. The methods of this work are quite general and do apply to the parabolic setting.
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