

Available online at www.sciencedirect.com

C. R. Acad. Sci. Paris, Ser. I 345 (2007) 495-497

COMPTES RENDUS MATHEMATIQUE

http://france.elsevier.com/direct/CRASS1/

Algebraic Geometry

An analog of a theorem of Lange and Stuhler for principal bundles

Indranil Biswas, Laurent Ducrohet

School of Mathematics, Tata Institute of Fundamental Research, Homi Bhabha Road, Bombay 400005, India

Received 12 July 2007; accepted after revision 2 October 2007

Available online 31 October 2007

Presented by Michel Raynaud

Abstract

Let k be an algebraically closed field of characteristic p > 0 and G the base change to k of a connected reduced linear algebraic group defined over $\mathbb{Z}/p\mathbb{Z}$. Let E_G be a principal G-bundle over a projective variety X defined over the field k. Assume that there is an étale Galois covering $f: Y \to X$ with degree(f) coprime to p such that the pulled back principal G-bundle f^*E_G is trivializable. Then there is a positive integer n such that the pullback $(F_X^n)^*E_G$ is isomorphic to E_G , where F_X is the absolute Frobenius morphism of X.

This can be considered as a weak converse of the following observation due to P. Deligne. Let H be any algebraic group defined over k and E_H a principal H-bundle over a scheme Z. If the pulled back principal H-bundle $(F_Z^n)^* E_H$ over Z is isomorphic to E_H for some n > 0, where F_Z is the absolute Frobenius morphism of Z, then there is a finite étale Galois cover of Z such that the pullback of E_H to it is trivializable. **To cite this article: I. Biswas, L. Ducrohet, C. R. Acad. Sci. Paris, Ser. I 345 (2007).** © 2007 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Résumé

Un analogue d'un théorème de Lange et Stuhler pour les fibrés principaux. Soient k un corps algébriquement clos de caractéristique positive p et G l'extension à k d'un groupe linéaire algébrique connexe, défini sur $\mathbb{Z}/p\mathbb{Z}$. Soit E_G un G-fibré principal au-dessus d'une variété projective X défini sur k. Supposons qu'il existe un revêtement étale galoisien $f: Y \to X$ de degré premier à p tel que le pull-back f^*E_G est trivial. Alors il existe un entier n > 0 tel que le pull-back $(F_X^n)^*E_G$ est isomorphe à E_G , où F_X est le Frobenius absolu de X.

Ce résultat peut être considéré comme une réciproque partielle de l'observation suivante due à P. Deligne. Soit H un groupe algébrique quelconque défini sur k et E_H un H-fibré principal au-dessus d'un schéma Z. Si l'image inverse $(F_Z^n)^* E_H$ est isomorphe à E_H pour un entier n > 0 convenable, alors il existe un revêtement étale galoisien de Z tel que le pull-back de E_H à ce revêtement est trivial, où F_Z est le Frobenius absolu de Z. **Pour citer cet article : I. Biswas, L. Ducrohet, C. R. Acad. Sci. Paris, Ser. I 345 (2007).**

© 2007 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

E-mail addresses: indranil@math.tifr.res.in (I. Biswas), ducrohet@math.tifr.res.in (L. Ducrohet).

¹⁶³¹⁻⁰⁷³X/\$ – see front matter © 2007 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved. doi:10.1016/j.crma.2007.10.010

1. Introduction

Let X be a projective variety defined over an algebraically closed field k of positive characteristic. Let $F_X : X \to X$ be the absolute Frobenius morphism of X. For any integer $n \ge 1$, the n-fold iteration of the self-map F_X will be denoted by F_X^n .

A vector bundle, or more generally a principal bundle, over X is called étale trivializable if its pullback to some étale Galois cover of X is a trivial bundle. The following theorem is due to Lange and Stuhler (see [3]):

Theorem 1.1. If a vector bundle E over X is isomorphic to $(F_X^n)^*E$ for some $n \ge 1$, then E is étale trivializable. For any stable étale trivializable vector bundle E over X, there is a positive integer n such that $(F_X^n)^*E$ is isomorphic to E.

See [3, p. 75, Theorem. 1.4] for the proof of the first part. For the second part, assume that *E* is trivialized by an étale Galois covering $Y \to X$ with Galois group Γ of order *d*. Then there is a group homomorphism

 $\rho: \Gamma \to \mathrm{GL}\big(\mathrm{rk}(E), k\big)$

giving E; see also (1). Since Γ has order d, the determinant of any element in the image of ρ is in the finite field \mathbb{F}_{p^d} , and the determinant is a character of $GL(\operatorname{rk}(E), k)$. Also, the stability condition of E implies that ρ is absolutely irreducible. Therefore, from [1, p. 150, Theorem 9.14] it follows that ρ is actually equivalent to a representation $G \to GL(\operatorname{rk}(E), \mathbb{F}_{p^d})$. This implies that $(F_X^d)^* E \cong E$.

Although the condition in the second statement of Theorem 1.1 that E is stable was not mentioned in [3], the following example provided by Y. Laszlo shows that the second statement of Theorem 1.1 is not valid if the assumption that E is stable is removed.

Take a Mumford–Tate curve X of genus $g \ge 3$ over $\overline{\mathbb{F}_p((t))}$. Its fundamental group is isomorphic to the profinite completion of the free group with g generators and it surjects onto the finite group G of all upper triangular unipotent 3×3 matrices with entries in \mathbb{F}_p . Let $\pi: Y \to X$ be an étale Galois covering with Galois group G. One can check that the representation of G in GL(3, $\overline{\mathbb{F}_p((t))}$) defined by

$$\rho: \begin{pmatrix} 1 & a & b \\ 0 & 1 & c \\ 0 & 0 & 1 \end{pmatrix} \mapsto \begin{pmatrix} 1 & at & bt^2 \\ 0 & 1 & ct \\ 0 & 0 & 1 \end{pmatrix}$$

is not conjugated to any of its Frobenius twists. Therefore, the rank 3 vector bundle $(\pi_*(\mathcal{O}_Y^{\oplus 3}))^{\rho(G)}$ on X associated to this representation is étale trivializable but it is not isomorphic to any of its iterated Frobenius pullbacks.

Let G_p be any connected reduced linear algebraic group defined over $\mathbb{Z}/p\mathbb{Z}$, where *p* is the characteristic of *k*. Let $G := G_p \times_{\mathbb{F}_p} k$ be the base change of G_p to *k*. Let E_G be a principal *G*-bundle over *X*.

Our aim here is to prove the following:

Theorem 1.2. Assume that there is an étale Galois covering $f: Y \to X$ such that

- f^*E_G is trivializable, and
- degree(f) is coprime to the characteristic of the field k.

Then there is a positive integer n such that the pullback $(F_x^n)^* E_G$ is isomorphic to E_G .

This theorem is proved in Section 2.

Let *H* be any algebraic group defined over *k*. Let E_H be a principal *H*-bundle over a scheme *Z*. If the pulled back principal *H*-bundle $(F_Z^n)^* E_H$ over *Z* is isomorphic to E_H for some n > 0, where F_Z is the absolute Frobenius morphism of *Z*, then E_H is étale trivializable [4, p. 655] (in [4] this is attributed to P. Deligne).

2. Étale trivializable with degree coprime to characteristic

Let G be the base change to k of a connected reduced linear algebraic group G_p defined over the field \mathbb{F}_p , where p is the characteristic of k. As in the previous section, E_G is a principal G-bundle over the projective variety X.

Theorem 2.1. Assume that there is an étale Galois covering $f: Y \to X$ such that the pulled back principal *G*-bundle f^*E_G is trivializable, and the degree of *f* is coprime to *p*. Then there is a positive integer *n* such that the pullback $(F_X^n)^*E_G$ is isomorphic to E_G .

Proof. Let $\Gamma := \text{Gal}(f)$ be the Galois group for f. Fixing a trivialization

$$\psi: f^*E_G \to Y \times G$$

of f^*E_G , and also choosing a k-rational point y_0 of Y, we get a homomorphism

which is constructed as follows. For any $\gamma \in \Gamma$, consider the natural identifications of the fiber $(E_G)_{f(y_0)}$ with $(f^*E_G)_{y_0}$ and $(f^*E_G)_{\gamma(y_0)}$; in terms of these identifications,

$$\psi^{-1}\bigl(\bigl(\gamma(y_0), e\bigr)\bigr) = \psi^{-1}\bigl((y_0, e)\bigr)\rho(\gamma).$$

It is easy to see that E_G is identified with the extension of structure group, using ρ , of the principal Γ -bundle Y over X.

Let \mathfrak{g} denote the Lie algebra of G. The adjoint action of G on \mathfrak{g} and the homomorphism ρ in (1) together define an action of Γ on \mathfrak{g} . Since the cardinality $\#\Gamma$ is coprime to the characteristic of the field k, we have

$$H^1(\Gamma, \mathfrak{g}) = 0 \tag{2}$$

(see [2, p. 83, Exercise 2]). Let

Let

 $M_h := \operatorname{Hom}(\Gamma, G)$

be the variety comprising of all homomorphisms from Γ to G. It is known that M_h is an affine variety. Also, M_h is the base change to k of the variety, defined over \mathbb{F}_p , given by the homomorphisms from Γ to G_p . The group G acts on M_h through conjugation. Let

 $O(\rho) \subset M_h$

be the orbit of the homomorphism ρ in (1) for this action of G on M_h . Using (2) it follows that $O(\rho)$ is a Zariski open subset [6]. (For any morphism from a smooth variety to a scheme such that at some point the homomorphism of Zariski tangent spaces is surjective, the image contains a Zariski open subset; using this together with [5, p. 91, Lemma 6.8] it follows that $O(\rho)$ is a Zariski open subset of M_h .) Therefore, there is some positive integer *n* such that $O(\rho)$ contains a homomorphism

$$\rho_n \colon \Gamma \to G_{p^n},\tag{3}$$

where G_{p^n} is the base change of G_p to \mathbb{F}_{p^n} . In other words, the point ρ_n of M_h is defined over \mathbb{F}_{p^n} .

Let E_G^n denote the principal *G*-bundle over *X* obtained by extending the structure group of the principal Γ -bundle *Y* using the homomorphism ρ_n in (3). Since ρ_n is conjugate to ρ , it follows that E_G^n is isomorphic to E_G . On the other hand, the pulled back principal *G*-bundle $(F_X^n)^* E_G^n$ is isomorphic to E_G^n because the homomorphism ρ_n is defined over \mathbb{F}_p^n . This completes the proof of the theorem. \Box

Acknowledgements

We thank Y. Laszlo for the example in Section 1.

References

- [1] I.M. Isaacs, Character Theory of Finite Groups, Academic Press, New York, 1976.
- [2] N. Jacobson, Lectures in Abstract Algebra, Vol. III Theory of Fields and Galois Theory, D. Van Nostrand Company, Princeton, 1964.
- [3] H. Lange, U. Stuhler, Vektorbündel auf kurven und darstellungen der algebraischen fundamentalgruppe, Math. Z. 156 (1977) 73–83.
- [4] Y. Laszlo, A non-trivial family of bundles fixed by the square of Frobenius, C. R. Acad. Sci. Paris 333 (2001) 651–656.
- [5] M.S. Raghunathan, Discrete Subgroups of Lie Groups, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 68, Springer-Verlag, New York, 1972.
- [6] A. Weil, Remarks on the cohomology of groups, Ann. Math. 80 (1964) 149-157.