
C. R. Acad. Sci. Paris, Ser. I 345 (2007) 603–608
http://france.elsevier.com/direct/CRASS1/

Partial Differential Equations

Vector and scalar potentials, Poincaré’s theorem and Korn’s
inequality

Chérif Amrouche a, Philippe G. Ciarlet b, Patrick Ciarlet, Jr. c

a Laboratoire de mathématiques appliquées, CNRS UMR 5142, Université de Pau et des pays de l’Adour, IPRA, avenue de l’université,
64000 Pau, France

b Department of Mathematics, City University of Hong Kong, 83, Tat Chee Avenue, Kowloon, Hong Kong
c Laboratoire POEMS, UMR 2706 CNRS/ENSTA/INRIA, École nationale supérieure de techniques avancées, 32, boulevard Victor,

75739 Paris cedex 15, France

Received and accepted 6 October 2007

Presented by Philippe G. Ciarlet

Abstract

In this Note, we present several results concerning vector potentials and scalar potentials in a bounded, not necessarily simply-
connected, three-dimensional domain. In particular, we consider singular potentials corresponding to data in negative order Sobolev
spaces. We also give some applications to Poincaré’s theorem and to Korn’s inequality. To cite this article: C. Amrouche et al.,
C. R. Acad. Sci. Paris, Ser. I 345 (2007).
© 2007 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Résumé

Potentiels vecteurs et scalaires, théorème de Poincaré et inégalité de Korn. Dans cette Note, nous présentons plusieurs
résultats concernant les potentiels vecteurs et les potentiels scalaires dans des domaines bornés tridimensionnels, éventuellement
multiplement connexes. En particulier, on considère des potentiels singuliers correspondant à des données dans des espaces de
Sobolev d’exposant négatif. On donne également des applications au théorème de Poincaré et à l’inégalité de Korn. Pour citer cet
article : C. Amrouche et al., C. R. Acad. Sci. Paris, Ser. I 345 (2007).
© 2007 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Weak versions of a classical theorem of Poincaré

In this work, we assume that Ω is a bounded open connected of R3 with a Lipschitz-continuous boundary. The
notation X′ 〈 , 〉X denotes a duality pairing between a topological space X and its dual X′. The letter C denotes a
constant that is not necessarily the same at its various occurrences.

Theorem 1. Let f ∈ H−m(Ω)3 for some integer m � 0. Then, the following assertions are equivalent:
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(i) H−m(Ω)〈f ,ϕ〉Hm
0 (Ω) = 0 for any ϕ ∈ Vm = {ϕ ∈ Hm

0 (Ω)3;divϕ = 0},
(ii) H−m(Ω)〈f ,ϕ〉Hm

0 (Ω) = 0 for any ϕ ∈ V = {ϕ ∈ D(Ω)3;divϕ = 0},
(iii) There exists a distribution χ ∈ H−m+1(Ω), unique up to an additive constant, such that f = gradχ in Ω .

If Ω is in addition simply-connected, then the three previous statements are equivalent to:

(iv) curlf = 0 in Ω .

Proof. For the equivalence between (i), (ii) and (iii), we refer to [4]. The implication (iii) ⇒ (iv) clearly holds. It thus
remains to prove that (iv) ⇒ (iii). To begin with, let f ∈ H−m(Ω)3 be such that curlf = 0 in Ω . We then use the
same argument as in [6]. We know that there exist a unique u ∈ Hm

0 (Ω)3 and a unique p ∈ H−m+1(Ω)/R (see [3])
such that

�mu + gradp = f and divu = 0 in Ω. (1)

Hence �m curlu = 0 in Ω , so that the hypoellipticity of the polyharmonic operator �m implies that curlu ∈
C∞(Ω)3. Since divu = 0, we deduce that �u = curl curlu ∈ C∞(Ω)3. This also implies that �mu belongs to
C∞(Ω)3 and is an irrotational vector field. By the classical Poincaré lemma, there exists q ∈ C∞(Ω)3 such that
�mu = gradq . Thus, we see that f = grad(p + q) and thanks to [4] Proposition 2.10, the function p + q belongs to
the space H−m+1(Ω). �

We can give another proof of this implication (iv) ⇒ (iii) by using the following theorem:

Theorem 2. Assume that the sets Ω and R3 \ Ω are simply-connected. Let u ∈ Hm
0 (Ω)3, m � 0, be a function that

satisfies divu = 0 in Ω . Then there exists a vector potential ψ in Hm+1
0 (Ω)3 such that

u = curlψ, div�m+1ψ = 0 in Ω, (2)

and the following estimate holds:

‖ψ‖Hm+1(Ω)3 � C‖u‖Hm(Ω)3 . (3)

Proof. Let u ∈ Hm
0 (Ω)3 be such that divu = 0 in Ω and let ũ denote the extension of u by 0 in R3 \ Ω . Thus

ũ ∈ Hm
0 (R3)3, div ũ = 0 in R3, and there exist an open ball B containing Ω and a vector field w ∈ Hm+1

0 (B)3 such
that ũ = curlw in B , and

‖w‖Hm+1(B)3 � C‖u‖Hm(B)3 .

The open set Ω ′ := B \ Ω is bounded, has a Lipschitz-continuous boundary and is simply-connected. Furthermore,
the vector field w′ := w|Ω ′ belongs to Hm+1(Ω ′)3 and satisfies curlw′ = 0 in Ω ′. Hence there exists a function
χ ′ ∈ H 1(Ω ′) such that w′ = gradχ ′ in Ω ′. Hence in fact χ ′ ∈ Hm+2(Ω ′) and the estimate

‖χ ′‖Hm+2(Ω ′) � C‖w′‖Hm+1(Ω ′)3

holds. Since the function χ ′ ∈ Hm+2(Ω ′) can be extended to a function χ̃ in Hm+2(R3), with

‖χ̃‖Hm+2(
R3) � C‖χ ′‖Hm+2(Ω ′) � C‖w′‖Hm+1(Ω ′)3,

the vector field ϕ̃ := w−grad χ̃ belongs to the space Hm+1(B)3 and satisfies ϕ̃|Ω ′ = 0. Then the restriction ϕ := ϕ̃|Ω
is in the space Hm+1

0 (Ω)3, satisfies the estimate (3), and curl ϕ̃ = curlw = ũ in B . Thus u = curlϕ in Ω , with
ϕ ∈ Hm+1

0 (Ω)3. Let now p ∈ Hm+2
0 (Ω) denote the unique solution of �m+2p = div�m+1ϕ, so that the estimate

‖p‖Hm+2(Ω) � C‖ϕ‖Hm+1(Ω)3

holds. Then the function ψ = ϕ − gradp satisfies (2), (3). �
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We can now give another proof of the above implication (iv) ⇒ (iii): Consider again the solution u ∈ Hm
0 (Ω)3 of

(1) and let v ∈ Hm+1
0 (Ω)3 denote the vector potential of u as given by Theorem 2. We then have �m curlu = 0. If

m = 2k, with k � 1, then

H−m−1(Ω)3〈�m curlu,v〉
Hm+1

0 (Ω)3 = H−1(Ω)3〈�k curlu,�kv〉H 1
0 (Ω)3

=
∫
Ω

�ku · �k curlv dx = ‖�ku‖2
L2(Ω)3 .

This implies that �ku = 0 in Ω and thus u = 0 since u ∈ Hm
0 (Ω)3. The case m = 2k + 1 follows by a similar

argument. �
2. Scalar potentials

Let Γi , 0 � i � I , denote the connected components of the boundary Γ of the domain Ω , Γ0 being the boundary
of the only unbounded connected component of R3 \ Ω . We do not assume that Ω is simply-connected, but we
suppose that there exist J connected, oriented and open surfaces Σj , 1 � j � J , called ‘cuts’, contained in Ω , such
that each surface Σj is an open subset of a smooth manifold, the boundary of Σj is contained in Γ for 1 � j � J ,
the intersection Σi ∩ Σj is empty for i 
= j , and finally the open set Ω◦ = Ω \ ⋃J

j=1 Σj is simply-connected and
pseudo-Lipschitz (see [1]). Finally, let [·]j denote the jump of a function over Σj , for 1 � j � J .

We then define the spaces

H(curl,Ω) = {
v ∈ L2(Ω)3; curlv ∈ L2(Ω)3}, H(div,Ω) = {

v ∈ L2(Ω)3;divv ∈ L2(Ω)
}
,

which are provided with the graph norm, and their subspaces

H0(curl,Ω) = {
v ∈ H(curl,Ω);v × n = 0 on Γ

}
, H0(div,Ω) = {v ∈ H(div,Ω);v · n = 0 on Γ }.

For any function q in H 1(Ω◦), gradq is the gradient of q in the sense of distributions in D ′(Ω◦). It belongs to
L2(Ω◦)3 and therefore can be extended to L2(Ω)3. In order to distinguish this extension from the gradient of q in
D ′(Ω), we denote it by g̃radq . We finally observe that the space

KT (Ω) := {
w ∈ H(curl,Ω) ∩ H0(div,Ω); curlw = 0 and divw = 0 in Ω

}
is of dimension equal to J . As shown in [1] Prop. 3.14, it is spanned by the functions g̃radqT

j , 1 � j � J , where

each qT
j ∈ H 1(Ω◦) is unique up to an additive constant and satisfies �qT

j = 0 in Ω◦, ∂nq
T
j = 0 on Γ , [qT

j ]k = δjk ,

[∂nq
T
j ]k = 0 and H−1/2(Σk)

< ∂nq
T
j ,1 >H 1/2(Σk)

= δjk for 1 � k � J .

Theorem 3. For any function f ∈ L2(Ω)3 that satisfies

curlf = 0 in Ω and
∫
Ω

f · vdx = 0 for all v ∈ KT (Ω), (4)

there exists a scalar potential χ in H 1(Ω) such that f = gradχ and the following estimate holds:

‖χ‖H 1(Ω) � C‖f ‖L2(Ω)3 . (5)

Proof. It suffices to show that, given any v ∈ H0(div,Ω) such that divv = 0 in Ω , there holds (f ,v)L2(Ω)3 = 0.

For such v ∈ H0(div,Ω), let z = ∑J
j=1 H−1/2(Σj ) < v · n, 1 >H 1/2(Σj ) g̃radqT

j and w = v − z. According to [1],

Theorem 3.17, there exists a vector potential ψ ∈ L2(Ω)3 satisfying w = curlψ, divψ = 0 in Ω and ψ × n = 0
on Γ . Hence∫

Ω

f · v dx =
∫
Ω

f · curlψ dx = 0.

The result is then a consequence of Theorem 1: there exists a function χ ∈ H 1(Ω) satisfying f = gradχ and the
estimate (5) holds. �
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Remark 4. Any function f ∈ L2(Ω)3 that satisfies curlf = 0 in Ω can be decomposed as:

f = gradχ + g̃rad p, with χ ∈ H 1(Ω) and g̃radp ∈ KT (Ω).

Such a result is alluded to in [7] (page 959); however it is not proven there.
The second condition in (4) is trivially satisfied when Ω is simply-connected since KT (Ω) = {0} in this case.

Theorem 5. For any distribution f in the dual space of H0(div,Ω) that satisfies

curlf = 0 in Ω and H0(div,Ω)′ 〈f ,v〉H0(div,Ω) = 0 for all v ∈ KT (Ω), (6)

there exists a scalar potential χ in L2(Ω) such that f = gradχ and the following estimate holds:

‖χ‖L2(Ω) � C‖f ‖H0(div,Ω)′ . (7)

Proof. Let f be in the dual space of H0(div,Ω) with curlf = 0 in Ω . We know that there exists ψ ∈ L2(Ω)3 and
χ0 ∈ L2(Ω) such that f = ψ + gradχ0, with the estimate (see Proposition 1 of [5])

‖ψ‖L2(Ω)3 + ‖χ0‖L2(Ω) � C‖f ‖H0(div,Ω)′ .

Observe that, thanks to the density of D(Ω)3 in H0(div,Ω), we have H0(div,Ω)′ 〈gradχ0,v〉H0(div,Ω) = 0 for all
v ∈ KT (Ω). Therefore, the function ψ ∈ L2(Ω)3 satisfies the conditions (4). By Theorem 3, there exists a function
p ∈ H 1(Ω) such that ψ = gradp, with the estimate

‖p‖H 1(Ω) � C‖ψ‖L2(Ω)3 � C‖f ‖H0(div,Ω)′ .

Hence, the function χ = p + χ0 satisfies the announced properties. �
More generally, for any integer m � 1, let us introduce the space

Hm
0 (div,Ω) = {

v ∈ H0(div,Ω);divv ∈ Hm
0 (Ω)

}
.

We can prove that D(Ω)3 is dense in Hm
0 (div,Ω). Moreover, we can characterize its dual space, denoted by

H−m(div,Ω):

H−m(div,Ω) = {
ψ + gradχ; ψ ∈ H0(div,Ω)′, χ ∈ H−m(Ω)

}
.

As a consequence of Theorem 5, it is easy to prove that, for any distribution f ∈ H−m(div,Ω) that satisfies (6), there
exists a scalar potential χ in H−m(Ω) such that f = gradχ . We thus obtain an extension of part (iv) in Theorem 1
in the case where Ω is multiply-connected.

3. ‘Weak’ vector potentials

First, we note that the continuous embeddings H0(curl,Ω)′ ↪→ H−1(Ω)3 and H0(div,Ω)′ ↪→ H−1(Ω)3 hold.
Besides, for any f ∈ H−1(Ω)3, we know that there exist a unique u ∈ H 1

0 (Ω)3 such that divu = 0 in Ω , and χ ∈
L2(Ω) such that f = �u + gradχ and the estimate

‖u‖H 1(Ω)3 + ‖χ‖L2(Ω)/R � C‖f ‖H−1(Ω)3

holds. Letting ξ = curlu, we obtain f = curl ξ + gradχ . Since ξ ∈ L2(Ω)3 and χ ∈ L2(Ω), it follows that curl ξ ∈
H0(curl,Ω)′ and gradχ ∈ H0(div,Ω)′. Therefore

H−1(Ω)3 = H0(curl,Ω)′ + H0(div,Ω)′.

Here, we consider the other kernel

KN(Ω) = {
w ∈ H0(curl,Ω) ∩ H(div,Ω); curlw = 0 and divw = 0 in Ω

}
,

which is of dimension equal to I . It is spanned (see Proposition 3.18 of [1] for a proof) by the functions gradqN
i ,

1 � i � N , where each qN
i ∈ H 1(Ω) is the unique solution to the problem �qN

i = 0 in Ω , qN
i = 0 on Γ0,

H−1/2(Γ )〈∂nq
N,1〉H 1/2(Γ ) = −1, and qN = const on Γk , H−1/2(Γ )〈∂nq

N,1〉H 1/2(Γ ) = δik , for 1 � k � I .

0 i 0 i k i k
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Theorem 6. For any distribution f in the dual space H0(curl,Ω)′ that satisfies

divf = 0 in Ω and H0(curl,Ω)′ 〈f ,v〉H0(curl,Ω) = 0 for all v ∈ KN(Ω), (8)

there exists a vector potential ξ in L2(Ω)3 such that

f = curl ξ , with div ξ = 0 in Ω and ξ · n = 0 on Γ, (9)

and such that the following estimate holds:

‖ξ‖L2(Ω)3 � C‖f ‖H0(curl,Ω)′ . (10)

Proof. Let f be in the dual space H0(curl,Ω)′. According to Corollary 5 of [5], there exist ψ ∈ L2(Ω)3 and ξ0 ∈
L2(Ω)3 with div ξ0 = 0 in Ω and ξ0 · n = 0 on Γ , such that f = ψ + curl ξ0 and such that the estimate

‖ψ‖L2(Ω)3 + ‖ξ0‖L2(Ω)3 � C‖f ‖H0(curl,Ω)′

holds. Thanks to the density of D(Ω)3 in H0(curl,Ω), we deduce that for all v ∈ KN(Ω), we have

H0(curl,Ω)′ 〈curl ξ0,v〉H0(curl,Ω) = 0.

Since divf = 0, it follows that divψ = 0. Then, thanks to the orthogonality condition,

H0(curl,Ω)′ 〈f ,gradqN
i 〉H0(curl,Ω) = 0

for all i = 1, . . . , I , the condition H−1/2(Γi )
〈ψ · n,1〉H 1/2(Γi )

= 0 is satisfied for all i = 0, . . . , I . There thus exists a
vector potential ϕ ∈ L2(Ω)3 (see Theorem 3.12 of [1]) such that ψ = curlϕ, with divϕ = 0 in Ω and ϕ ·n = 0 on Γ ,
and such that the estimate

‖ϕ‖L2(Ω)3 � C‖ψ‖L2(Ω)3 .

holds. Hence, the vector function ξ = ξ0 + ϕ possesses the announced properties. �
Remark 7. Theorem 6 has been established in [5] when Γ is connected, in which case KN = {0}.

For any integer m � 1, let us now introduce the space

Hm
0 (curl,Ω) := {

v ∈ H0(curl,Ω); curlv ∈ Hm
0 (Ω)3}.

We can prove that D(Ω)3 is dense in Hm
0 (curl,Ω). Moreover, we can characterize its dual space as

H−m(curl,Ω) = {
ψ + curl ξ ; ψ ∈ H0(curl,Ω)′, ξ ∈ H−m(Ω)3}.

Like in Section 3, given any distribution f ∈ H−m(curl,Ω), with m � 1, that satisfies (8), there exists a vector
potential ξ ∈ H−m(Ω)3 such that f = curl ξ . Finally, using the decomposition (1) with m replaced by m + 1, it is
easy to prove, as in Section 3 , that

H−m−1(Ω)3 = H−m(curl,Ω) + H−m(div,Ω), for m � 1.

4. Generalized Korn’s inequality

Finally, we consider tensor fields. The next theorem extends [6] Theorem 3.2; see also [2] Theorem 7.2.

Theorem 8. Assume that Ω is simply-connected. Given any integer m � 0, let e = (eij ) ∈ H−m(Ω)3×3 be a symmetric
matrix field that satisfies the following compatibility conditions for all i, j, k, l ∈ {1,2,3}:

Rijkl := ∂2eik

∂xl∂xj

+ ∂2ejl

∂xk∂xi

− ∂2ejk

∂xl∂xi

− ∂2eil

∂xk∂xj

= 0 in H−m−2(Ω). (11)

Then there exists a vector field v ∈ H−m+1(Ω)3 such that eij = 1
2 (

∂vi

∂xj
+ ∂vj

∂xi
) and v is unique up to vector fields in

the space R(Ω) = {a + b ∧ idΩ ;a,b ∈ R3}.
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Proof. Let e = (eij ) ∈ H−m
s (Ω)3×3 (the subscript s denotes a symmetric matrix field), and let fijk := ∂eik

∂xj
− ∂ejk

∂xi
.

Then fijk ∈ H−m−1(Ω) and, thanks to the compatibility conditions (11), we have ∂
∂xl

fijk = ∂
∂xk

fij l . Hence the impli-
cation (iii) ⇒ (iv) in Theorem 1 shows that there exist distributions pij ∈ H−m(Ω), unique up to additive constants,
such that ∂

∂xk
pij = fijk . Besides, since ∂

∂xk
pij = − ∂

∂xk
pji , we can choose the distributions pij in such a way that

pij + pji = 0. Noting that the distributions qij := eij + pij belong to H−m(Ω) and satisfy ∂
∂xk

qij = ∂
∂xj

qik , we again

resort to Theorem 1 to assert the existence of distributions vi ∈ H−m+1(Ω), unique up to additive constants, such that
∂vi

∂xj
= qij . �

Define, for any integer m � 0, the following spaces:

E(Ω) := {
e ∈ H−m

s (Ω)3×3, Rijkl(e) = 0
}

and Ḣ−m+1(Ω)3 := H−m+1(Ω)3/R(Ω).

By the previous theorem, for any e = (eij ) ∈ E(Ω), there exists a unique v̇ = (v̇i) ∈ Ḣ−m+1(Ω)3 such that eij =
1
2 (

∂v̇i

∂xj
+ ∂v̇j

∂xi
). We may thus define a linear mapping F :E(Ω) → Ḣ−m+1(Ω)3 by F(e) = v̇. Using the same method

as in [6], we can then prove the following result:

Theorem 9. The linear mapping F :E(Ω) → Ḣ−m+1(Ω)3 is an isomorphism. Besides, there exists a constant C � 0
such that

inf
r∈R(Ω)

‖v + r‖H−m+1(Ω)3 � C
∑
i,j

∥∥eij (v)
∥∥

H−m(Ω)
for all v ∈ H−m+1(Ω)3,

and

‖v‖H−m+1(Ω)3 � C

(
‖v‖H−m(Ω)3 +

∑
i,j

∥∥eij (v)
∥∥

H−m(Ω)

)
for all v ∈ H−m+1(Ω)3

where eij (v) = 1
2 (

∂vi

∂xj
+ ∂vj

∂xi
).
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