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Abstract

We describe the moduli space of germs of generic families of analytic diffeomorphisms which unfold a parabolic fixed point of
codimension 1. A complete modulus is given by unfolding the Écalle–Voronin modulus over a sector of opening greater than 2π in
the canonical parameter ε. In the region of overlap (Glutsyuk sector of parameter space) where the two fixed points are connected
by orbits, we identify the necessary compatibility between the two representatives of the modulus. The compatibility condition
implies the existence of a normalization for which the modulus is 1

2 -summable in ε, non-summability occurring in the direction
of real multipliers of the fixed points. We show that the compatibility condition together with the summability is sufficient for
realization of the modulus. To cite this article: C. Christopher, C. Rousseau, C. R. Acad. Sci. Paris, Ser. I 345 (2007).
© 2007 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Résumé

L’espace des modules des germes de familles génériques de difféomorphismes analytiques déployant un point fixe para-
bolique. On donne l’espace des modules des germes de familles génériques de difféomorphismes analytiques déployant un point
fixe parabolique de codimension 1. Un module complet est donné par le déploiement du module d’Écalle–Voronin sur un secteur
d’ouverture plus grande que 2π du paramètre canonique. Dans le sous-secteur recouvert deux fois (sous-secteur Glutsyuk), là où
les deux points fixes sont connectés par des orbites, on identifie une condition de compatibilité nécessaire satisfaite par les deux
représentants du module. Cette condition implique l’existence d’une normalisation sous laquelle le module est 1

2 -sommable en
ε, la non-sommabilité se produisant dans la direction des multiplicateurs réels aux points fixes. On montre que la condition de
compatibilité, jointe à cette propriété de sommabilité, est suffisante pour réaliser le module. Pour citer cet article : C. Christopher,
C. Rousseau, C. R. Acad. Sci. Paris, Ser. I 345 (2007).
© 2007 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.
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1. Statement of the results

We consider germs of generic analytic 1-parameter families of diffeomorphisms of (C,0) unfolding a parabolic
point. Such families can be ‘prepared’ so that the parameter becomes an analytic invariant [2]. A prepared family with
canonical (complex) parameter ε has the form

fε(z) = z + (z2 − ε)
(
1 + b(ε) + c(ε)z + O(z2 − ε)

)
, (1)

so that 1/
√

ε = 1/ln(f ′
ε(

√
ε )) − 1/ln(f ′

ε(−
√

ε )). The formal invariant, a(ε), is the analytic function in ε given by
a(ε) = 1/ln(f ′

ε(
√

ε )) + 1/ln(f ′
ε(−

√
ε )).

In [2] (and [5]) it is shown that a modulus for such unfoldings can be obtained from the formal parameter, a(ε),
and two analytic functions, Ψ 0

ε̂
and Ψ ∞

ε̂
, which describe the shift between two choices of Fatou coordinates on their

region of overlap. The Fatou coordinates are chosen so that

lim
ImW→−∞Ψ 0

ε̂
= id, lim

ImW→+∞Ψ ∞
ε̂

= T−2πia(ε), (2)

where Tb denotes translation by b. Here, ε̂ represents the parameter ε when lifted to the universal cover of the
punctured disc. These functions are always assumed to satisfy T1 ◦ Ψ

0,∞
ε̂

= Ψ
0,∞
ε̂

◦ T1. That is, they could also be

considered as lifts of maps ψ
0,∞
ε̂

between neighborhoods of the poles of two spheres. We demonstrate the following

theorems, which identify the extra conditions on the Ψ
0,∞
ε̂

to form a moduli space for analytic unfoldings, and prove
their sufficiency:

Theorem 1.1. Consider a prepared germ of the form (1). Then for δ ∈ (0,π) there exists ρ > 0 and a representative
of the modulus, (Ψ 0

ε̂
,Ψ ∞

ε̂
), defined for ε̂ ∈ Vδ,ρ = {ε̂; |ε̂| < ρ, arg ε̂ ∈ (−δ,2π + δ)} such that.

(i) there exists Y0 > 0 such that Ψ 0
ε̂

(resp. Ψ ∞
ε̂

) is analytic on ImW < −Y0 (resp. ImW > Y0) for all ε̂ ∈ Vδ,ρ ;

(ii) Ψ
0,∞
ε̂

are 1
2 -summable in ε (i.e. 1-summable in

√
ε̂) with direction of non-summability given by R

+ (see [3] for
k-summability);

(iii) Ψ
0,∞
ε̂

give rise to the following compatibility condition.

We cover the region of overlap arg(ε) ∈ (−δ, δ) (Glutsyuk sector) by the two subsectors

�V = {
ε̂;0 < |ε̂| < ρ, arg ε̂ ∈ (−δ,+δ)

}
, Ṽ = {

ε̂;0 < |ε̂| < ρ, arg ε̂ ∈ (2π − δ,2π + δ)
}
, (3)

on which we denote ε̂ by ε̄ and ε̃ respectively (and Ψ 0,∞
ε by Ψ̃

0,∞
ε̃

and �Ψ 0,∞
�ε ). We also define

α0 = −2πi
(
1 − a(ε)

√
ε̂
)
/2

√
ε̂, α∞ = −2πi

(
1 + a(ε)

√
ε̂
)
/2

√
ε̂.

On Ṽ (resp. �V ), α0,∞ takes values α̃0,∞ (resp. ᾱ0,∞). Then there exist maps �H 0,∞
ε̄ and H̃

0,∞
ε̃

holomorphic in W and
ε̂ and commuting with T1 which satisfy

on Ṽ

{
H̃ 0

ε̃
◦ Tα̃0 ◦ Ψ̃ 0

ε̃
= Tα̃0 ◦ H̃ 0

ε̃
,

H̃∞
ε̃

◦ Tα̃0 ◦ Ψ̃ ∞
ε̃

= Tα̃∞ ◦ H̃∞
ε̃

,
on �V

{ �H 0
ε̄ ◦ �Ψ 0�ε ◦ Tᾱ0 = Tᾱ0 ◦ �H 0

ε̄ ,

�H ∞̄
ε ◦ �Ψ ∞̄

ε ◦ Tᾱ0 = Tᾱ∞ ◦ �H ∞̄
ε .

(4)

The compatibility condition is

H̃∞
ε̃ ◦ (

H̃ 0
ε̃

)−1 = T2πia(ε) ◦ �H 0
ε̄ ◦ ( �H ∞̄

ε

)−1 ◦ TD(ε) (5)

for some constant D(ε) = −2πia(ε) + O(exp(− A
|√ε| )) with A > 0.

Conversely, we have the following:

Theorem 1.2. Consider a germ of a function a(ε) analytic in ε and a germ of a family (Ψ 0
ε̂
,Ψ ∞

ε̂
)ε̂∈Vδ,ρ

for some
δ ∈ (0,π) and ρ > 0, which satisfies (i), (ii) and (iii) of Theorem 1.1. Then there exists a germ of family of analytic
diffeomorphisms

fε = z + (z2 − ε)
(
1 + O(ε) + O(z)

)
(6)
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whose modulus over a fixed neighborhood in (z, ε)-space is given by (Ψ 0
ε̂
,Ψ ∞

ε̂
)ε̂∈Vδ,ρ

and a(ε).

Remark 1. In the unfolded modulus, the map Ψ 0
ε̂

(resp. Ψ ∞
ε̂

) refers to the dynamics near −√
ε̂ (resp.

√
ε̂). When

ε̂ makes a full turn, −√
ε̂ and

√
ε̂ are exchanged. We therefore have two different ways of describing the dynamics

near each singular point in the region of overlap. The functions H̃
0,∞
ε̃

and �H 0,∞
ε̄ are lifts of normalizations of fε̂ at

the fixed points. Such maps must exist due to the hyperbolicity of the fixed points in the region of overlap [1]. The
compatibility condition guarantees that H̃

0,∞
ε̃

in Ṽ and �H 0,∞
ε̄ in �V glue to the same dynamics. It is an interesting fact

that though the functions H̃
0,∞
ε̃

and �H 0,∞
ε̄ have no geometrical meaning at ε = 0, yet their limits can be calculated

and are well-behaved. This fact is of some importance in step (2) of the proof below.

Remark 2. The correspondence established in Theorems 1.1 and 1.2 can be extended in a natural way to the case
when fε depends on a number of auxiliary analytic parameters.

2. The proofs

The proof of Theorems 1.1 and 1.2 is composed of four parts:

(1) the construction of (Ψ
0,∞
ε̂

)ε̂∈Vδ,ρ
: this is done in [2];

(2) the derivation of the compatibility condition from which the 1
2 -summability of Ψ

0,∞
ε̂

follows;
(3) the ‘local realization’ over sectorial neighborhoods in ε̂ of small opening: this yields the realization by a family

gε̂ ramified in ε with uniform limit g0 when ε̂ → 0 along any ray arg ε̂ = Const. The local realization does not
use (2);

(4) the global realization: from gε̂ , using the compatibility condition we construct a uniform family fε over an abstract
2-dimensional manifold. The 1

2 -summability of Ψ
0,∞
ε̂

allows application of the Newlander–Nirenberg theorem to
show that this manifold is an open set of C

2.

In more detail:
(2) To decide when two diffeomorphisms fε unfolding a parabolic point are conjugate, we embed them in the flow of

the vector field vε = z2−ε
1+a(ε)z

d
dz

on adequate sectorial domains and measure the obstruction to a global embedding. For

this it is easier to work in a coordinate W which is the time of the vector field vε . The four maps H̃
0,∞
ε̃

and �H 0,∞
ε̄ can

be seen as the lifting of a change of coordinate embedding the map in a flow near the hyperbolic fixed points ±√
ε. In

the W -coordinate this flow is that of ∂
∂W

. The comparison of these embeddings is an invariant: this is exactly what is
expressed by the compatibility condition, modulo a scaling given by the constant D(ε). To derive the 1

2 -summability

of Ψ 0
ε̂

we explicitly calculate the maps H̃
0,∞
ε̃

and �H 0,∞
ε̄ in some region inside ImW > Y0. There exists A,C > 0 such

that { | �H 0
ε̄ − id | < C exp(−A/|√ε̂|),

|H̃ 0
ε̃

− id | < C exp(−A/|√ε̂|), and

{ |( �H ∞̄
ε )−1 − �Ψ ∞̄

ε − 2πia| < C exp(−A/|√ε̂|),
|H̃∞

ε̃
− Ψ̃ ∞

ε̃
− 2πia| < C exp(−A/|√ε̂|),

so the compatibility condition yields the 1
2 -summability of Ψ ∞

ε̂
by the theorem of Ramis–Sibuya [4]. A similar study

in some region inside ImW < −Y0 allows to prove the 1
2 -summability of Ψ 0

ε̂
.

(3) The local realization for ε̂ in a sector of small opening is first done for fixed ε̂ by gluing two sectors U±
ε̂

as in

Fig. 1 with maps Ξ
0,∞
ε̂

constructed from Ψ
0,∞
ε̂

(Ξ0,∞
ε̂

is the conjugate of Ψ
0,∞
ε̂

under the change z 	→ W ). The
U±

ε̂
are images of modified strips in the W domain. This yields a complex manifold Mε̂ which we endow with a

diffeomorphism given on each U±
ε̂

by the time-one map of the vector field vε . The theorem of Ahlfors–Bers allows
recognition of the abstract manifold Mε̂ as a neighborhood of ±√

ε in C and to fill the holes at the fixed points. The
construction can be made to depend analytically on ε̂ with a continuous fixed limit M0 as ε̂ → 0 along a ray. In this
way we realize the modulus in a ramified family gε̂ for ε̂ in some Vδ,ρ .
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Fig. 1. The sectors U±
ε̂

for ε̂ ∈ Vδ,ρ : U−
ε̂

is light grey, U+
ε̂

is middle grey and their intersection is dark grey.

(4) The compatibility condition ensures that gε̄ and gε̃ are conjugate by some Jε̂ for arg ε̄ ∈ (−δ, δ) and ε̃ = e2πi ε̄.
Moreover gε̂ is 1

2 -summable in ε̂ with directions of non-summability given by arg ε̂ ∈ {0,2π}. An indirect con-
sequence of this is that |Jε̂ | = O(exp(− A

|√ε̂| )) for some positive A. We construct an abstract manifold by gluing

B(0, r) × {arg ε̂ ∈ (−δ, δ)} with B(0, r) × {arg ε̂ ∈ (2π − δ,2π + δ)}, by means of (z, ε̄) 	→ (Jε̂(z), ε̃) and pasting in
B(0, r) × {ε = 0} to fill the hole. This gives us a C∞ manifold M with an almost complex structure. We apply the
Newlander–Nirenberg theorem to realize M as a neighborhood of the origin in C

2 on which gε̂ induces a family of
analytic diffeomorphisms fε realizing the modulus.
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[2] P. Mardešić, R. Roussarie, C. Rousseau, Modulus of analytic classification for unfoldings of generic parabolic diffeomorphisms, Moscow

Math. J. 4 (2004) 455–502.
[3] J.-P. Ramis, Les séries k-sommables et leurs applications, in: Complex Analysis, Microlocal Calculus and Relativistic Quantum Theory, Proc.

Internat. Colloq., Centre Phys., Les Houches, 1979, in: Lecture Notes in Phys., vol. 126, Springer, Berlin, New York, 1980, pp. 178–199 (in
French).

[4] J.-P. Ramis, Y. Sibuya, Hukuhara’s domains and fundamental existence and uniqueness theorems for asymptotic solutions of Gevrey type,
Asymptotic Anal. 2 (1989) 39–94.

[5] X. Ribon, Modulus of analytic classification for unfoldings of resonant diffeomorphisms, Moscow Math. J., in press.


