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Abstract

Curves in Lagrange Grassmannians naturally appear when one studies Jacobi equations for extremals, associated with geometric
structures on manifolds. We fix integers di and consider curves Λ(t) for which at each t the derivatives of order � i of all curves
of vectors �(t) ∈ Λ(t) span a subspace of dimension di . We will describe the construction of a complete system of symplectic
invariants for such parametrized curves, satisfying a certain genericity assumption, and give applications to geometric structures,
including sub-Riemannian and sub-Finslerian structures. To cite this article: I. Zelenko, C. Li, C. R. Acad. Sci. Paris, Ser. I 345
(2007).
© 2007 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Résumé

Courbes paramétrées dans les grassmanniennes lagrangiennes. Les courbes dans les grassmanniennes lagrangiennes ap-
paraissent naturellement lors de l’étude intrinsèque des « équations de Jacobi pour les extremas », associées à des structures
géométriques sur les variétés différentielles. Nous fixons des entiers di et considérons les courbes Λ(t) pour lesquelles en chaque
t les dérivées d’ordre � i des �(t) ∈ Λ(t) engendrent un sous-espace de dimension di . Nous décrirons la construction d’un
système complet d’invariants symplectiques pour de telles courbes paramétrées vérifiant une condition de généricité, et nous
donnerons des applications à la géométrie différentielle de structures géométriques, incluant les structures sous-riemanniennes et
sous-finsleriennes. Pour citer cet article : I. Zelenko, C. Li, C. R. Acad. Sci. Paris, Ser. I 345 (2007).
© 2007 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Version française abrégée

Soit Λ(t), t ∈ [0, T ], une courbe dans la grassmannienne lagrangienne L(W) de l’espace vectoriel symplectique
(W,ω). En étudiant les courbes dans les grassmanniennes lagrangiennes, on peut développer de façon unifiée [1] la
géométrie différentielle de structures géométriques sur les variétés. Notons par S(Λ) l’ensemble des courbes �(t)

dans W telles que �(t) ∈ Λ(t) pour tout t . Soit Λ(j)(τ ) = span{ di

dτ i �(τ ): � ∈ S(Λ),0 � i � j}. On dit qu’une courbe

Λ(t) est à croissance constante, si les dimensions des Λ(j)(t) sont indépendentes de t . L’objectif de cet article est de
décrire un système complet d’invariants d’une courbe Λ(t) à croissance constante, satisfaisant l’hypothèse de généri-
cité (G), pour l’action du groupe symplectique de W . Soit Λ(−j)(t) = (Λ(j)(t))

�
, où (Λ(j)(t))

�
dénote l’orthogonal
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symplectique de Λ(j)(t). Soit Grj (t) = Λ(j)(t)/Λ(j−1)(t). L’espace gradué GrW(t) somme des Grj (t) est naturel-
lement muni d’une structure symplectique et d’un endomorphisme de degré un δ, appartenant à l’algèbre de Lie du
groupe symplectique. Pour une courbe satisfaisant la condition (G), il existe un tuple d’entiers {r+

i , r−
i }ki=1 tel que le

groupe GAut des transformations symplectiques de GrW(t), préservant la graduation et commutant avec δ, est iso-
morphe à O(r+

1 , r−
1 ) × · · · × O(r+

k , r−
k ). Pour chaque courbe nous construisons une connexion canonique sur le fibré

vectoriel sur [0, T ] de fibres les GrW(t) et une décomposition symplectique canonique de la filtration {Λ(j)(t)}j∈Z

de W , i.e. un isomorphisme symplectique canonique At : GrW(t) �→ W compatible avec la filtration et tel que l’ap-
plication graduée induite est l’identité. Pour le fibré principal constant sur [0, T ] des repères symplectiques de W ,
ceci fournit une réduction du groupe structural à GAut et une connexion sur le GAut fibré principal correspondant
(un GAut-fibré de repères mobiles symplectiques). Les invariants qui apparaissent dans l’équation structurale de ces
repères mobiles constituent un système complet d’invariants symplectiques de la courbe.

1. Introduction

Let (W,ω) be a real symplectic vector space. The Lagrange Grassmannian L(W) of W is the space of La-
grangian subspaces of W . The symplectic group Sp(W) acts on L(W). Let Λ : [0, T ] �→ L(W) be a parametrized
smooth curve in L(W). Denote by S(Λ) the set of all smooth curves �(t) in W such that �(t) ∈ Λ(t) for all t . Let

Λ(i)(τ ) = span{ dj

dτ j �(τ ): � ∈ S(Λ),0 � j � i}. An analogous construction can be done for smooth curves in any

Grassmannian. By construction Λ(i−1)(τ ) ⊆ Λ(i)(τ ). We will consider only curves Λ(t) of constant growth, i.e. such
that the dimensions of the subspaces Λ(i)(t) are independent of t . This assumption always holds for t in some non-
empty open subset of [0, T ]. Constant growth implies that dimΛ(i+1)(t) − dimΛ(i)(t) � dimΛ(i)(t) − dimΛ(i−1)(t)

and we define as follows the Young diagram D of Λ(t): the number of boxes in the ith column of D is equal to
dimΛ(i) − dimΛ(i−1). Our main problem is to find a complete system of invariants w.r.t. the natural action of Sp(W)

on L(W) of a parametrized curve Λ(t) in L(W) with given Young diagram D. This problem is a particular case of
the problem of finding invariants of curves in homogeneous spaces. A general procedure for the latter problem was
developed already by E. Cartan with his method of moving frames. By studying curves in Lagrange Grassmannians,
one can develop in the unified way the differential geometry of geometric structures on manifolds [1]. Here by a
geometric structure on a manifold M we mean a submanifold V of the tangent bundle T M transversal to the fibers.
Examples are sub-Riemannian (respectively sub-Finslerian) structures: the case where for any q ∈ M the set V ∩TqM

is an ellipsoid centered at the origin (respectively the boundary of a convex body) in a linear subspace Dq in TqM .
The problem stated above was previously solved only in the following two cases: the case when the Young diagram D

consists of one column, which corresponds to curves appearing in the case of Riemannian or Finslerian structures [1],
and the case when the Young diagram consists of one row [2]. We solve the problem for parametrized curves in L(W)

with arbitrary Young diagram, satisfying the genericity condition (G) below. This condition holds automatically for
the so-called monotonic curves, i.e., when the velocities of a curve are semidefinite quadratic forms at any point (un-
der the identification of the tangent space to L(W) at Λ with the space of quadratic forms on Λ). This is the case
for curves corresponding to sub-Riemannian or sub-Finslerian structures. Our use of Young diagrams is not related to
representations of the symmetric group. Rather, they are convenient to describe normalization conditions for moving
frames associated with a curve.

2. The main results

Let Λ(t) be a smooth curve in the Grassmannian Gk(W) of all k-dimensional subspaces in W . Given a subspace V

in W denote by V ⊥ the annihilator of V in the dual space W ∗: V ⊥ = {p ∈ W ∗: 〈p,v〉 = 0,∀v ∈ V }. Set Λ(−j)(t) =
((Λ(t)⊥)(j))⊥ for j � 0. We get the nondecreasing filtration {Λ(j)(t)}j∈Z of W . Recall that the velocity d

dt
Λ(t) can

be identified with an element of Hom(Λ(t),W/Λ(t)) in the following way: d
dt

Λ(t)v = [�′(0)], where � ∈ S(Λ),
�(0) = v, and [�′(0)] is the image of �′(0) in W/Λ(t). In the case of a curve Λ(t) in the Langrange Grassmannian
L(W) the velocity d

dt
Λ(t) can be identified with a quadratic form on Λ(t) by d

dt
Λ(t)v = ω(�′(0), v), where � is as

above. If the curve Λ(t) has constant growth, then the subspaces Λ(−j)(t), j > 0 can be also defined recursively
by Λ(−j)(t) = Ker d

dt
Λ(−j+1)(t). Moreover, if we define Grj (t) := Λ(j)(t)/Λ(j−1)(t), then the velocity d

dt
Λ(j)(t)

factors through a map δ from Grj (t) to Grj+1(t). This map is surjective for j � 0 and injective for j � 0. If Λ(t)
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is a curve in L(W), then we have Λ(−j)(t) = (Λ(j)(t))
�

, where (Λ(j)(t))
�

denotes the symplectic orthogonal of
Λ(j)(t) (w.r.t the symplectic form ω). In this case the form ω induces a symplectic form ω̄ on the graded space
GrW(t) = ⊕

j∈Z
Grj (t) in the following way: if x̄ ∈ Grj (t) and ȳ ∈ Gr

j̃
(t) with j + j̃ = 1, then ω̄(x̄, ȳ) := w(x,y),

where x and y are representatives of x̄ and ȳ in Λ(j)(t) and Λ(j̃)(t) respectively; if j + j̃ �= 1, then ω̄(x̄, ȳ) = 0. In
general, let

⊕
j∈Z

Xj be a graded symplectic space and N in its symplectic Lie algebra be such that N(Xj ) ⊆ Xj+1.
The pair (

⊕
j∈Z

Xj ,N) is called a symbol. The symbol (
⊕

j∈Z
Grj (t), δ) is said to be the symbol of the curve Λ(t)

at the point t .
We do not lose much by assuming that there exists an integer p such that Λ(p)(t) = W . Otherwise, if Λ(p+1)(t) =

Λ(p)(t) ⊂ W , then the subspace V = Λ(p)(t) does not depend on t and one can work with the curve Λ(t)/V
�

in the
symplectic space V/V

�
instead of Λ(t). We will say that the curve Λ(t) in L(W) satisfies condition (G) if it has con-

stant growth, is such that Λ(p)(t) = W for some p, and if further for any j � 0 the map δ2j+1 : Gr−j (t) �→ Grj+1(t)

is an isomorphism. As the pairing between Gr−j (t) and Grj+1(t) is nondegenerate and the form ω̄(δ2j+1x̄, ȳ) on
Gr−j (t) is symmetric, this amounts to require that for each j � 0 the quadratic form x̄ �→ ω̄(δ2j+1x̄, x̄) on Gr−j (t) is
nondegenerate or, equivalently, the quadratic form x̄ �→ ω̄(δx̄, x̄), defined on the subspace δj (Gr−j (t)) of Gr0(t),
is nondegenerate (the latter equivalence follows from the identity ω̄(δ2j+1−s x̄, δs x̄) = (−1)sω̄(δ2j+1x̄, x̄) for all
x̄ ∈ Gr−j (t)). As a consequence, monotonic curves Λ(t) of constant growth with Λ(p)(t) = W for some p satisfy
condition (G). Indeed, if the velocity d

dt
Λ(t) is semidefinite, then the quadratic form x̄ �→ ω̄(δx̄, x̄) on Gr0(t) is defi-

nite and therefore its restriction to any subspace of Gr0(t) is definite. Germs of curves at a point τ satisfying condition
(G) are generic among all germs of curves at τ with given Young diagram D such that the number of boxes of D is
equal to 1

2 dim W .
From now on Λ : [0, T ] �→ L(W) will be a curve having the Young diagram D and satisfying condition (G). Let

the length of the rows of D be p1 repeated r1 times, p2 repeated r2 times, . . . , pk repeated rk times with p1 > p2 >

· · · > pk . The reduction of the Young diagram D is the Young diagram Δ, consisting of k rows such that the ith row
has pi boxes. Let σi be the last box of the ith row of Δ and cj be the number of boxes in the j th column of Δ. For
any 1 � i � k denote by Pσi

(t) ⊂ Gr1−pi
(t) the kernel of the map δ2pi : Gr1−pi

(t) �→ Grpi+1(t). One has dimPσi
= ri

and isomorphisms
cj⊕

i=1

Pσi
(t)

ϕj

�→∼ Gr1−j (t)
δ2j−1

�→∼ Grj (t), (1)

where ϕj (x̄)
def= δpi−j (x̄) for any x̄ ∈ Pσi

(t). The subspace Pσi
(t) of Gr1−pi

(t) is in fact the orthogonal complement
of δ(Gr−pi

(t)) w.r.t. the nondegenerate symmetric bilinear form 〈x̄, ȳ〉 = (−1)pi−1ω̄(δ2pi−1x̄, ȳ). So, the restriction
of this form to Pσi

(t) is nondegenerate as well. This restriction defines the canonical pseudo-Euclidean structure Qi

on Pσi
. The negative inertia index r−

i of Qi is said to be the ith negative index of the curve Λ. The symbols of the
curve Λ at different points are all isomorphic. Their isomorphism class is determined by the Young diagram D and the
tuple of negative indexes {r−

i }ki=1 of the curve Λ. Further, for any 1 � i � k, let Wi(t) = (Λ(1−p1))(2p1−1)(t) + · · · +
(Λ(1−pi))(2pi−1)(t). Then for a curve satisfying condition (G) the restriction of the symplectic form ω to the subspace

Wi(t) is nondegenerate for any 1 � i � k. Set Vσi
(t)

def= Λ(1−pi)(t) ∩ Wi−1(t)
�

. The subspace Vσi
(t) is a lift of the

subspaces Pσi
(t) from Gr−pi+1(t) = Λ(1−pi)(t)/Λ(−pi)(t) to Λ1−pi (t). Namely, if prj :Λ(j)(t) �→ Grj (t) denotes

the canonical projection to the factor space, then pr1−pi
|Vσi

(t) defines an isomorphism between Vσi
(t) and Pσi

(t). Let

At :
⊕k

i=1 Pσi
(t) �→ W be the linear map such that At |Pσi

(t) is the inverse map of pr1−pi
|Vσi

(t) for any 1 � i � k. The
vector bundle Pσi

over [0, T ] with fibers Pσi
(t) has a unique connection such that the corresponding parallel transform

preserves the canonical pseudo-Euclidean structures on the fibers and such that for any two horizontal sections s1(t)

and s2(t) one has ω( dpi

dtpi
At (s1(t)),

dpi

dtpi
At (s2(t))) = 0. Using identifications (1), we obtain also a canonical linear

connection on the vector bundle GrW over [0, T ] with fibers GrW(t).
We say that a symplectic linear map B : GrW(t) �→ W is a symplectic splitting of the filtration {Λ(j)(t)}j∈Z, if B

is compatible with the filtration {Λ(j)(t)}j∈Z, i.e. B(Grj (t)) ⊂ Λ(j)(t), and satisfies prj ◦ Bx̄ = x̄ for any x̄ ∈ Grj (t).

Our next goal is to extend the maps At , defined above on the spaces
⊕k

i=1 Pσi
(t), to symplectic splittings of the

filtrations {Λ(j)(t)}j∈Z in a canonical way. Denote Gr−(t) = ⊕
j�0 Grj (t) and Gr+(t) = ⊕

j>0 Grj (t). First, we can
extend At to Gr−(t) ⊕ Gr1(t), using recursively the following formula:



650 I. Zelenko, C. Li / C. R. Acad. Sci. Paris, Ser. I 345 (2007) 647–652
At

(
δs(t)

) = d

dt
At

(
s(t)

) ∀s(t) ∈ Gr−(t) such that s(t) is a horizontal section in GrW. (2)

Note that from the definition of the connection on the bundle GrW it follows that this extension of At is compatible
with the restrictions of the symplectic forms to Gr−(t) ⊕ Gr1(t) and Λ(1)(t). Further, recall that the symplectic form
ω̄ defines the natural identification between Gr−(t) and Gr+(t)∗: v ∈ Gr−(t) ∼ ω̄(·, v) ∈ Gr+(t)∗. If for any t a
symplectic splitting At of the filtration {Λ(j)(t)}j∈Z satisfying (2) is chosen, then there exists a family of self-adjoint
maps Rt : Gr+(t) �→ Gr+(t)∗ (∼ Gr−(t)) such that

d

dt
At

(
s(t)

) = At

(
δs(t) + Rts(t)

) ∀s(t) ∈ Gr+(t) such that s(t) is a horizontal section in GrW. (3)

The canonical symplectic splitting of the filtration {Λ(j)(t)}j∈Z will be chosen by imposing certain conditions on the
map Rt from (3). Let Δ̄ be the diagram obtained from Δ by the reflection w.r.t. its left edge. Denote by l the left
shift on the diagram Δ ∪ Δ̄ and by ā the box of Δ ∪ Δ̄, obtained from the box a by the reflection of a w.r.t. the left
edge of Δ. Let Plj (σi )

(t) = δj (Pσi
(t)) for any 1 � j � 2pi − 1. Then Gr−(t) = ⊕

a∈ΔPa(t). For any box b ∈ Δ

let πb be the canonical projection from Gr−(t) = ⊕
a∈Δ Pa(t) to Pb(t). From the condition (G) it follows that for

any box a ∈ Δ the restriction of the symplectic form ω̄ to Pa(t) ⊕ Pā(t) is nondegenerate, hence identifies Pa(t)

and Pā(t)
∗. Given any self-adjoint map R : Gr+(t) �→ Gr+(t)∗ (∼ Gr−(t)) and a pair of boxes (a, b) of Δ denote by

R(a, b) the following map from Pā(t) to Pb(t) ∼ Pb̄(t)
∗: R(a, b) = πb ◦ R |Pā

. Since the map R is self-adjoint, one
has R(b, a)∗ = R(a, b) for any (a, b) ∈ Δ × Δ.

Further, denote by ai the first box of the ith row of diagram Δ and by r :Δ\{σi}di=1 �→ Δ the right shift on the
diagram Δ. For any pair of integers (i, j) such that 1 � j < i � k consider the following sequence of pairs of boxes

(aj , ai),
(
aj , r(ai)

)
,
(
r(aj ), r(ai)

)
,
(
r(aj ), r

2(ai)
)
, . . . ,

(
rpi−1(aj ), r

pi−1(ai)
)
,

(
rpi (aj ), r

pi−1(ai)
)
, . . . ,

(
rpj −1(aj ), r

pi−1(ai)
)
.

(4)

Definition 1. A self-adjoint map R : Gr+(t) �→ Gr+(t)∗(∼ Gr−(t)) is called normal, if the following two conditions
hold:

(i) Among all linear maps R(a, b), where the box b is not higher than the box a in the diagram Δ, the only possible
nonzero maps are the following: the maps R(a, a) for all a ∈ Δ, the maps R(a, r(a)), R(r(a), a) for all a /∈
{σi}ki=1, and the maps, corresponding to the pairs, which appear in the sequence (4), starting with the (pj − pi)th
pair in the sequence (4), for any 1 � j < i � k;

(ii) For any a /∈ {σi}ki=1 the map δ ◦ R(a, r(a)) :Pā (t) �→Pa(t) ∼ (Pā(t)
∗) is anti-self-adjoint.

A pair of boxes (a, b) of Δ is called essential if the maps R(a, b) corresponding to a normal map R : Gr+(t) �→
Gr+(t)∗ are not necessarily equal to zero. A family of symplectic splittings At : GrW(t) �→ W of the filtrations
{Λ(j)(t)}j∈Z is said to be normal, if it satisfies relation (2) and (3), where all maps Rt are normal.

Theorem 1. For any curve Λ : [0, T ] �→ L(W) having the Young diagram D and satisfying condition (G) there exists
a unique normal family of symplectic splittings At : GrW(t) �→ W of the filtrations {Λ(j)(t)}j∈Z.

Now we give several consequences of Theorem 1. In what follows At denotes the normal family of symplectic
splittings of the filtrations {Λ(j)(t)}j∈Z. The map Rt : Gr+(t) �→ Gr+(t)∗ corresponding to the normal symplec-
tic splitting At is called the curvature map associated with the curve Λ at the point t and the corresponding
map Rt(a, b) is called the (a, b)-curvature maps of the curve Λ at t for any essential pair (a, b). The canoni-
cal connection of the bundle GrW defines parallel transport isomorphisms between the symbols (

⊕
j∈Z

Grj (t), δ)
and the symbol (

⊕
j∈Z

Grj (0), δ). Using these isomorphisms, the maps At and Rt can be considered as elements
of Hom(GrW(0),W) and Hom(Gr+(0),Gr+(0)∗) respectively. The group GAut of automorphisms of the symbol
(
⊕

j∈Z
Grj (0), δ) is isomorphic to O(r1 − r−

1 , r−
1 ) × · · · × O(rk − r−

k , r−
k ). As a direct consequence of Theorem 1

and the ‘structural equations’ (2), (3), we have the following:

Theorem 2. Given a family of normal maps Rt : Gr+(0) �→ Gr+(0)∗ there exists a curve Λ : [0, T ] �→ L(W) with
symbol (

⊕
Grj (0), δ) at 0 and curvature map equal to Rt for any t ∈ [0, T ]. The curve Λ̃ : [0, T ] �→ L(W) with
j∈Z
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the same symbol (
⊕

j∈Z
Grj (0), δ) at 0 is symplectic equivalent to the curve Λ iff there exists an automorphism

g ∈ GAut such that the curvature map R̃t of the curve Λ̃ satisfies R̃t = g∗ ◦ Rt ◦ g for any t ∈ [0, T ].

If ri = 1 for all 1 � i � k (or, equivalently, all rows of the diagram D have different length), then all (a, b)-
curvature maps are determined by scalar functions of t , which will be called shortly (a, b)-curvatures of Λ. In this
case the group of automorphisms of the symbol (

⊕
j∈Z

Grj (0), δ) is discrete (∼ (Z2)
k). It implies the following:

Corollary 1. If all rows of the diagram D have different length, then given a tuple of smooth functions
{ρa,b(t): (a, b) ∈ Δ×Δ,(a, b) is an essential pair} and a tuple of {r−

i }ki=1, where r−
i ∈ {0,1}, there exists the unique,

up to a symplectic transformation, curve Λ : [0, T ] �→ L(W) having the Young diagram D and satisfying condition
(G) such that for any t and any essential pair (a, b) its (a, b)-curvature at t coincides with ρa,b(t) and its ith negative
index is equal to r−

i for any 1 � i � k.

The normal family of symplectic splittings At : GrW(0) �→ W produces a principal GAut-bundles over [0, T ]
of symplectic (Darboux) frames in W endowed with a canonical principal connection (or GAut-bundles of mov-
ing symplectic frames). For this fix a symplectic frame in GrW(0) compatible with the grading of GrW(0) and
take the image under At of all frames in the orbit of the chosen frame w.r.t. the action of GAut. Finally, let
Va(t) = At(Pa(0)) for any a ∈ Δ. Then we have the canonical splitting of the subspaces Λ(t): Λ(t) = ⊕

a∈Δ Va .
The curve Λtrans(t) = At(Gr+(0)) is said to be the normal complementary curve to the curve Λ(t). For an es-
sential pair (a, b) ∈ Δ × Δ, where a belongs to j th column of Δ, define Rt (a, b) ∈ Hom(Va,Vb) as follows:
Rt (a, b) = At ◦ Rt(a, b) ◦ δ2j−1 ◦ A−1

t |Va . In the next section by (a, b)-curvature map we will mean Rt (a, b) in-
stead of Rt(a, b).

3. Consequences for geometric structures

Let V be a geometric structure on a manifold M , i.e. a submanifold V ⊂ T M transversal to the fibers. Let Vq =
V ∩ TqM . Fix c in R and define the “dual” Hc

q of Vq by Hc
q = {λ ∈ T ∗

q M: ∃v ∈ Vq, 〈λ,v〉 = c, 〈λ,TvVq〉 = 0} and let
Hc be the union of the Hc

q . There are two essentially different cases: c = 1 and c = 0. For simplicity assume that Hc

is a codimension 1 submanifold of T ∗M and transversal to the T ∗
q M . Let π :T ∗M �→ M be the canonical projection,

ς be the canonical Liouville 1-form, and ω̄ = dς be the standard symplectic structure on T ∗M . The restriction ω̄|Hc

of ω̄ to Hc has one-dimensional kernels at any point, which are transversal to the fibers of T ∗M . They form a line
distribution in Hc and define the characteristic 1-foliation C of Hc. The leaves of this foliation are the characteristic
curves of σ |Hc .

Suppose that γ is a segment of a characteristic curve and Oγ is a neighborhood of γ in Hc such that N =
Oγ /(C|Oγ ) is a well-defined smooth manifold. The quotient manifold N has a symplectic structure ω induced
by ω̄|Hc . Let φ :Oγ → N be the canonical map; then φ(Hc

q ∩ Oγ ), q ∈ M , are Lagrangian submanifolds in N . Set
Jγ (λ) = φ∗(TλH

c
π(λ)), for any λ ∈ γ . The Jacobi curve of the characteristic curve γ is the map λ �→ Jγ (λ) from γ to

L(Tγ N). Jacobi curves are invariants of the hypersurface Hc ⊂ T ∗M and hence of the original geometric structure V .
So, any invariant of the Jacobi curves w.r.t. the natural action of Sp(Tγ N) produces a function on Hc intrinsically
related to the original geometric structure V . It turns out [1, Introduction] that the tangent vectors to the Jacobi curve
Jγ at a point Λ are equivalent (under linear substitutions of variables in the correspondent quadratic forms) to the
“second fundamental form” of the hypersurface Hc

π(λ) ⊂ T ∗
π(λ)M at the point λ, while the rank of the latter is not

greater than dimVπ(λ).
Assume that the germ of the curve Jγ at λ satisfies condition (G) and has the Young diagram D with the reduced

diagram Δ. Such λ is said to be D-regular. If c �= 0, then the curve γ (and therefore the Jacobi curve Jγ ) is endowed
with a canonical parameterization, up to a shift. Indeed, in this case the Liouville form does not vanish on the tangent
lines to γ and the canonical parametrization is defined by the rule ς(γ̇ ) = c. Let Jγ (λ) = ⊕

a∈Δ Ãa(λ) be the
canonical splitting of the subspace Jγ (λ) (w.r.t. the canonically parametrized curve Jγ ). Set Aa(λ) = φ−1∗ (Ãa(λ)) ∩
TλH

c
π(λ). Taking into account that φ∗ establishes an isomorphism between TλH

c
π(λ) and Jγ (λ), we get the following

canonical splitting of the tangent space Tλ(T
∗
π(λ)M) to the fiber of T ∗M at λ: TλT

∗
π(λ)M = ⊕

a∈Δ Ãa(λ)⊕span{ε(λ)},
where ε is the Euler field of T ∗M (the infinitesimal generator of the homotheties of the fibers of T ∗M). Besides, each
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subspace Aa(λ) is endowed with the canonical Euclidean structure and the corresponding curvature maps between the
subspaces of the splitting are intrinsically related to the geometric structure V . Further, let Hor(λ) = (φ∗)−1(J trans

γ (λ)),
where J trans

γ (λ) is the subspace corresponding to the normal complementary curve to the Jacobi curve Jγ at the point λ.
Then Hor(λ) is transversal to Tλ(T

∗
π(λ)M). So, if for some diagram D the set U of its D-regular points is open in

T ∗M\H 0, then the distribution of “horizontal” subspaces Hor(λ) defines a connection on U ⊂ T ∗M , canonically
associated with the geometric structure V . Note also that in the case of sub-Riemannian structures the set H 1

q is of

the form Q = 1, where Q is a positive semidefinite quadratic form. In this case assume that J
(p)
γ (λ) = Tγ N for some

λ and p. Then in any neighborhood U of λ in T ∗M there is an nonempty open set O ⊂ U of D-regular points for
some Young diagram D. Moreover, for any q ∈ π(O) the set of D-regular points of the fiber T ∗

q M is a nonempty
Zariski open subset. Besides, the canonical splitting, the curvature maps, and the canonical connection above depend
rationally on points of the fiber T ∗

q M . Finally note that in the case of a Riemannian metric the canonical connection
above coincides with the Levi-Civita connection, the reduced Young diagram of Jacobi curves consists of only one
box, and the Riemannian curvature tensor can be recovered from the corresponding curvature map.

Acknowledgements

We would like to thank the presentator for numerous suggestions, which essentially simplify and clarify the expo-
sition.

References

[1] A. Agrachev, I. Zelenko, Geometry of Jacobi curves. I, J. Dynam. Control Systems 8 (1) (2002) 93–140.
[2] I. Zelenko, Complete systems of invariants for rank 1 curves in Lagrange Grassmannians, in: Differential Geometry and its Applications, Proc.

Conf. Prague, August 30–September 3, 2004, Charles University, Prague, 2005, pp. 365–379.


