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Abstract

We present new results about Poisson–Dirichlet point processes and Derrida–Ruelle cascades that are motivated by applications
to mean-field spin glass models and, in particular, by the attempt to express Guerra’s interpolation in the Sherrington–Kirkpatrick
model entirely in the language of the cascades. To cite this article: D. Panchenko, M. Talagrand, C. R. Acad. Sci. Paris, Ser. I
345 (2007).
© 2007 Published by Elsevier Masson SAS on behalf of Académie des sciences.

Résumé

Sur une propriété des cascades de Derrida–Ruelle. Nous présentons une nouvelle propriété des processus ponctuels de
Poisson–Dirichlet et des cascades de Derrida–Ruelle. Cela nous permet d’exprimer l’interpolation de Guerra dans le modèle de
verres de spin de Sherrington–Kirkpatric entièrement dans le langage des cascades. Pour citer cet article : D. Panchenko, M. Ta-
lagrand, C. R. Acad. Sci. Paris, Ser. I 345 (2007).
© 2007 Published by Elsevier Masson SAS on behalf of Académie des sciences.

1. Introduction and main results

Given 0 < m < 1, consider a Poisson point process Π on (0,+∞) with intensity measure

dμm(x) = x−1−m dx for x ∈ (0,+∞). (1)

This classical object in the theory of Poisson point processes plays a very important role in the mean-field spin glass
models starting, probably, with the work of Ruelle in [11] that gives a mathematical foundation to Derrida’s random
energy model (REM) in [5] and its generalization (GREM) in [6]. A more detailed mathematical description of the
REM can be found, for example, in [13], Chapter 1, and we refer to [4] and references therein for results about the
GREM. A new description of the Derrida–Ruelle probability cascades and related results motivated by the physicist’s
cavity method were given in [3].

A breakthrough in the study of the Sherrington–Kirkpatrick model of spinglasses occurred with the introduction of
a new interpolation by Guerra [7], which soon lead to the proof of the celebrated Parisi formula by the second author
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in [14]. It was suggested in [2] that Derrida–Ruelle cascades can be used to give an alternative (and in some sense,
simpler) proof of the main bound in [7]. Another application in the same spirit was given in [9] where the analogue of
Guerra’s result was obtained for diluted mean-field models.

The arguments of [14] use not only the bound of Guerra [7] but crucially the precise form of the ‘error terms’ in
the interpolation. The present work was motivated by an attempt to express these error terms in Guerra’s interpolation
(and the entire proof of [14]) completely in the language of Derrida–Ruelle cascades. (For more on that see upcoming
second edition of [13]). It turned out that new properties of Derrida–Ruelle cascades are needed to achieve this goal
and these are presented below. We will not discuss Guerra’s interpolation here and refer the reader to [10] for details.

After the paper [10] was written, we found out that similar results appeared earlier in [1]. However, there seems
to be a gap in the argument given in [1]. It seems impossible to dispense with Lemma 2.1 below which is not proved
there.

2. Poisson–Dirichlet point process

For simplicity of notations, we will identify a process Π with its nondecreasing enumeration (un)n�1. Let S be
a complete separable metric space that we will also view as a measurable space with Borel σ -algebra. Consider an
i.i.d. sequence (Xn,Yn) with distribution ν on R × S independent of (un) and such that Xn > 0. Let ν1, ν2 denote the
marginals of ν and νx denote a regular conditional distribution of Y given X = x. Suppose that EX < ∞ and let νm

be a probability measure on S defined by

νm(B) =
∫

xm

EXm
νx(B)dν1(x), (2)

which is obviously a distribution of Y under the change of density Xm/EXm, i.e. for any measurable real valued
function φ,∫

φ(y)dνm(y) = EXmφ(Y )

EXm
.

The following holds:

Lemma 2.1. Poisson point process (unXn,Yn) has the same distribution as a point process(
(EXm)1/mun,Y

′
n

)
(3)

where (Y ′
n) is an i.i.d. sequence independent of (un) with distribution νm.

Remark. The special case where Yn = Xn appeared in [12]. Even though the proof of Lemma 2.1 is rather simple,
the idea itself is nontrivial and the formulation seems to be new.

Proof. By the marking theorem [8], a point process (un,Xn,Yn) is a Poisson point process with intensity measure
μ ⊗ ν on (0,∞) × (0,∞) × S. By the mapping theorem [8], (unXn,Yn) is a Poisson point process with intensity
measure given by the image of μ ⊗ ν under the mapping (u, x, y) �→ (ux, y) whenever this measure has no atoms.
Let us compute this image measure. Given two measurable sets A ⊆ (0,∞) and B ⊆ S,

μ ⊗ ν(ux ∈ A,y ∈ B) =
∫

μ(u : ux ∈ A)νx(B)dν1(x).

For x > 0 we have

μ(u : xu ∈ A) =
∫

I (xu ∈ A)x−1−m dx = um

∫
I (z ∈ A)z−1−m dz = umμ(A)

and, therefore,

μ ⊗ ν(ux ∈ A,y ∈ B) =
∫

xmμ(A)νx(B)dν1(x) = EXmμ(A) ⊗ νm(B).

Since the measure EXmμ is the intensity measure of a Poisson point process ((EXm)1/mun) this finishes the
proof. �
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3. Derrida–Ruelle cascades

Let us consider a sequence of parameters 0 < m1 < m2 < · · · < mk < 1. We start by constructing a family of point
processes on (0,+∞) as follows.

• Let (un1)n1�1 be a Poisson point process with intensity measure μm1 defined in (1).
• Recursively for 2 � l � k, for all (n1, . . . , nl−1) ∈ N

l−1 we define independent Poisson point processes
(un1...nl−1nl

)nl�1 with intensity measure μml
independent of all previously constructed processes (un1...nj

) for
j � l − 1.

Consider complete separable metric spaces S1, . . . , Sk which we also view as measurable spaces with Borel
σ -algebras and for l � k let Sl = S1 × · · · × Sl . Consider a probability measure ν on S1 and for 1 � l < k consider
regular conditional distributions

νl(·|x) on Sl+1 for x ∈ Sl. (4)

We generate a process Zα ∈ Sk indexed by α ∈ N
k according to the following recursive procedure, that is similar to

the procedure that generates the processes (un1...nl−1nl
)nl�1.

• Generate i.i.d. random variables (zn1)n1�1 with distribution ν.
• Recursively over 2 � l � k, given (zn1 , . . . , zn1...nl−1) for all n1 . . . nl−1 ∈ N, we generate i.i.d. sequences

(zn1...nl−1nl
)nl�1 with distributions

νl(·|zn1 , . . . , zn1...nl−1) (5)

independently for all n1, . . . , nl−1.

Then, for each α = (n1, . . . , nk) we define Zα = (zn1 , zn1n2, . . . , zn1...nk
). Given α ∈ N

k we write αl = (n1, . . . , nl)

and denote

uαl = un1...nl
, zαl = zn1...nl

, and Zαl = (zn1 , . . . , zn1...nl
).

Consider a measurable function X :Sk → R such that E expX(Zα) < ∞. Let Xα = X(Zα) and recursively for 1 �
l � k define

Xαl−1 = 1

ml

log El expmlXαl and Wαl = expml(Xαl − Xαl−1), (6)

where El denotes the expectation conditionally on (Zαl−1)α∈Nk . Thus, both Xαl and Wαl are functions of Zαl . In
particular, X0 := Xα0 is a constant. We can think of Wαl as a function of two variables, Wαl = Wl(Zαl−1 , zαl ). Let us
generate another process Z′

α exactly the same way as Zα only instead of (5) we let

Wl(Z
′
αl−1 , ·) dνl(·|Z′

αl−1) (7)

be the distribution of (z′
n1...nl−1nl

)nl�1 conditionally on Z′
αl−1 . This is a probability measure because by (6) and (5)

∫
Wl(Z

′
αl−1 , x) dνl(x|Z′

αl−1) = El expml(Xαl − Xαl−1) = 1.

The following generalizes Lemma 2.1 to the case of Derrida–Ruelle cascades:

Lemma 3.1. If we define eαl = exp(Xαl − Xαl−1) then the point processes

(uα1eα1, . . . , uαk eαk ,Zαk ) and (uα1 , . . . , uαk ,Z′
αk ) (8)

on R
+k × Sk have the same distribution.

The proof by induction using Lemma 2.1 can be found in [10]. As a consequence, defining vα = ∏
l�k un1...nl

and
writing vα exp(Xα − X0) = ∏

uαl eαl , we obtain the following:
1�l�k
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Corollary 3.2. The point processes(
vα exp(Xα − X0),Zα

)
and (vα,Z′

α) (9)

have the same distribution.

This is the main tool to give an explicit analytic expression for the error terms in Guerra’s interpolation when it is
written via Derrida–Ruelle cascades. We refer the reader to [10] for the details.
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