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Abstract

We introduce a new H(div) flux reconstruction for discontinuous Galerkin approximations of elliptic problems. The recon-
structed flux is computed elementwise and its divergence equals the L2-orthogonal projection of the source term onto the discrete
space. Moreover, the energy-norm of the error in the flux is bounded by the discrete energy-norm of the error in the primal variable,
independently of diffusion heterogeneities. To cite this article: A. Ern et al., C. R. Acad. Sci. Paris, Ser. I 345 (2007).
© 2007 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Résumé

Une reconstruction précise du flux dans H(div) pour des approximations par la méthode de Galerkine discontinue de
problèmes elliptiques. On introduit une nouvelle reconstruction dans H(div) du flux pour des approximations par la méthode de
Galerkine discontinue de problèmes elliptiques. Le flux reconstruit est calculé localement sur chaque maille et sa divergence est
égale à la projection L2-orthogonale du terme source sur l’espace discret. De plus, l’erreur en norme d’énergie sur le flux est bornée
par l’erreur en norme d’énergie discrète sur la variable primale, indépendamment des hétérogénéités dans la diffusion. Pour citer
cet article : A. Ern et al., C. R. Acad. Sci. Paris, Ser. I 345 (2007).
© 2007 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

The approximation of elliptic problems by the discontinuous Galerkin (dG) method has been introduced in the late
1970s and has been, more recently, the subject of extensive research; see, e.g., [2,6] and references therein. Advan-
tages of dG methods include flexibility in the design of approximation spaces (allowing for nonmatching meshes and
variable polynomial degree), compact discretization stencils amenable to parallelization, and, in the spirit of finite vol-
umes, a local (elementwise) formulation in terms of numerical fluxes. An issue that still deserves further investigation
is whether an accurate H(div) flux reconstruction can be performed using the discrete solution provided by the dG
method. This type of postprocessing is important at least in two instances. Firstly, this flux can serve as input data in
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further calculations; this is for instance the case when solving contaminant transport problems in porous media where
the flow velocity must be determined first by an approximation of Darcy’s equation. Secondly, this flux can be used
in a posteriori error estimates based on equilibrated fluxes. For conforming approximations, this type of estimates
are explored, e.g., in [1,10] and references therein. Recent work where an H(div) flux reconstruction is used for a
posteriori dG error estimates includes [5,8].

An H(div) flux reconstruction for the so-called nonsymmetric Interior Penalty (IP) Galerkin method has been
proposed and analyzed in [3]. The idea therein is to reconstruct the flux in the Brezzi–Douglas–Marini finite element
space and to use the mean values of the gradient of the dG solution at interfaces to specify the degrees of freedom.
The reconstructed flux is proven to be accurate in the L2-norm. In the present work, we propose a more accurate
reconstruction, namely in the Raviart–Thomas finite element space, and we address a wider class of IP-like methods.
The key improvement achieved when working with Raviart–Thomas finite element spaces is that the divergence of the
reconstructed flux can be proven to be optimal, i.e., it is equal to the L2-orthogonal projection of the data onto the dG
approximation space. This is a key property when the reconstructed flux is further used as an advective flow velocity
or as a tool for a posteriori error estimation. Moreover, as in [3], the reconstruction procedure can be performed
elementwise; thus, it does not demand significant computational effort.

This Note is organized as follows. §2 introduces the model problem and its dG approximation. In particular, we treat
recently introduced Weighted IP methods to cope satisfactorily with heterogeneities and anisotropies in the diffusion
tensor [9]. §3 presents and analyzes the H(div) flux reconstruction. The main results are Theorems 3.1 and 3.2.

2. The model problem and its dG approximation

Consider the model elliptic problem

−∇·(K∇u) = f in Ω, (1)

u = 0 on ∂Ω, (2)

with (for simplicity) homogeneous Dirichlet boundary conditions. Here, Ω ⊂ R
d , d = 2,3, is a polygonal domain,

K ∈ [L∞(Ω)]d,d is the diffusion tensor, and f ∈ L2(Ω) is the source term. The diffusion tensor is assumed to be
symmetric and uniformly positive definite in Ω .

Let {Th}h>0 be a conforming, shape-regular family of affine meshes of Ω consisting of simplices. The diffusion
tensor is assumed to be piecewise constant on Th. On an element T ∈ Th, the maximal and minimal eigenvalues of
K are denoted by ΛK,T and λK,T , respectively. For any integer k � 0, consider the usual dG approximation space
V k

h = {vh ∈ L2(Ω); ∀T ∈ Th, vh|T ∈ Pk}, where Pk is the set of polynomials of total degree less than or equal to k.
The L2-scalar product and its associated norm on a subset R ⊂ Ω are indicated by the subscript 0,R. The L2-
orthogonal projection from L2(Ω) onto V k

h is denoted by Πk
h . Interior and boundary faces are collected in the sets F i

h

and F∂
h , respectively, and we set Fh = F i

h ∪ F∂
h . For F ∈ F i

h, there are T − and T + in Th such that F = T − ∩ T +.
Let nF be the unit normal vector to F pointing from T − towards T +. For a double-valued function v on F , its
jump is defined as [[v]] = v− − v+ with v± = v|T ± . Choosing nonnegative weights ωT −,F and ωT +,F such that
ωT −,F + ωT +,F = 1, the weighted average of v on F is {v}ω = ωT −,F v− + ωT +,F v+. The usual average consists
of taking ωT −,F = ωT +,F = 1

2 . When the diffusion tensor is strongly heterogeneous, it is better [4,9] to consider
diffusion-dependent weights defined as ωT +,F = (δK,F+ + δK,F−)−1δK,F− and ωT −,F = (δK,F+ + δK,F−)−1δK,F+
where δK,F± = nt

F (K|T ±)nF . On boundary faces, we set [[v]] = v, {v}ω = v, ωT,F = 1 (where T is the mesh element
of which F is a face), and δK,F = nt

F (K|T )nF where nF coincides with the outward unit normal of Ω .
Let k � 1. The dG approximation consists of finding uh ∈ V k

h such that Bh(uh, vh) = (f, vh)0,Ω for all vh ∈ V k
h

with the bilinear form

Bh(v,w) =
∑

T ∈Th

(K∇v,∇w)0,T +
∑

F∈Fh

αh−1
F γK,F

([[v]], [[w]])0,F

−
∑

F∈Fh

((
nt

F {K∇v}ω, [[w]])0,F
+ θ

(
nt

F {K∇w}ω, [[v]])0,F

)
. (3)

The penalty coefficient γK,F is defined on interior faces as γK,F = (δK,F+ + δK,F−)−1δK,F+δK,F− (i.e., it depends
on the diffusion tensor via the harmonic average of the normal diffusivity) and as γK,F = δK,F on boundary faces.
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Furthermore, hF denotes the diameter of F , α is a positive parameter, and θ can take values in {−1,0,+1}. As usual
with IP-like methods, if θ 	= −1, the parameter α must be chosen large enough to ensure that the bilinear form Bh

is coercive. The threshold depends on the shape-regularity of the mesh family and the polynomial degree k, but not
on the meshsize and the diffusion tensor if the penalty parameter is designed as above. An optimal (with respect to
meshsize) a priori error estimate is proven in [9] in the discrete energy-norm

|||v|||2Ω =
∑

T ∈Th

|||v|||2T , |||v|||2T = (K∇v,∇v)0,T +
∑

F⊂∂T

αh−1
F γK,F

([[v]], [[v]])0,F
. (4)

The estimate is robust with respect to diffusion heterogeneities and only depends on local diffusion anisotropies.

3. The accurate H(div) flux reconstruction

Consider the Raviart–Thomas spaces of vector functions RTk
h = {vh ∈ H(div,Ω);vh|T ∈ RTk

T ∀T ∈ Th} where
RTk

T = P
d
k (T ) + xPk(T ). The reconstructed flux introduced in this Note, th ∈ RTk

h, is specified through its natural
degrees of freedom, namely for all F ∈ Fh and qh ∈ Pk(F ),

(th·nF , qh)0,F = (−nt
F {K∇uh}ω + αh−1

F γK,F [[uh]], qh

)
0,F

, (5)

and for all T ∈ Th and rh ∈ P
d
k−1(T ),

(th, rh)0,T = −(K∇uh, rh)0,T + θ
∑

F⊂∂T

ωT,F

(
nt

F Krh, [[uh]]
)

0,F
. (6)

Theorem 3.1. There holds ∇·th = Πk
hf .

Proof. For all T ∈ Th and ξ ∈ Pk(T ), (f, ξ)0,T = Bh(uh, ξ × 1T ) = −(th,∇ξ)0,T + ∑
F⊂∂T (th·nT , ξ)0,F =

(∇·th, ξ)0,T owing to (3), (5), and (6). �
The following result estimates the energy-norm of the error in the diffusive flux in terms of the discrete energy-

norm of the primal error (u−uh). In the sequel, A � B denotes the inequality A � cB with c independent of meshsize
and of K.

Theorem 3.2. There holds ‖K
1
2 ∇u + K− 1

2 th‖0,Ω � maxT ∈Th
(ΛK,T /λK,T )|||u − uh|||Ω .

Proof. Clearly, it suffices to estimate ‖K
1
2 ∇uh + K− 1

2 th‖0,Ω . Using scaling arguments and the Piola transformation,
one first shows that for all T ∈ Th and vh ∈ RTk

T ,

‖vh‖2
0,T � hT

∑

F⊂∂T

‖vh·nF ‖2
0,F + ‖Πk−1

h vh‖2
0,T . (7)

We apply this estimate to vh = (K∇uh + th)|T ∈ RTk
T . Owing to (5)–(6) and using inverse inequalities,

vh·nF = ω̄T ,F nt
F [[K∇uh]] + αh−1

F γK,F [[uh]]
and

‖Πk−1
h vh‖0,T � |θ |h−1/2

T ΛK,T

∑

F⊂∂T

ωT,F

∥∥[[uh]]
∥∥

0,F
,

where ω̄T ,F := 1 − ωT,F , so that

λ−1
K,T

‖vh‖2
0,T �

∑

F⊂∂T

λ−1
K,T

hT ω̄2
T ,F

∥∥nt
F [[K∇uh]]

∥∥2
0,F

+
∑

F⊂∂T

λ−1
K,T

h−1
F

(
γ 2

K,F + Λ2
K,T ω2

T ,F

)∥∥[[uh]]
∥∥2

0,F
. (8)

Let X and Y denote the two terms in the right-hand side. The first term is bounded using bubble functions, similarly
to the a posteriori analysis of conforming finite elements; see [7] for details. The result is

X � max
T ′∈T

(ΛK,T ′/λK,T ′)2
∑

′
|||u − uh|||2T ′ ,
T ∈T
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where T denotes the set of mesh elements sharing at least a face with T . The second term is bounded observing that
λ−1

K,T
γ 2

K,F
� (ΛK,T /λK,T )γK,F and λ−1

K,T
Λ2

K,T
ω2

T ,F � (ΛK,T /λK,T )2γK,F , leading to

Y � (ΛK,T /λK,T )2
∑

T ′∈T

|||u − uh|||2T ′ .

Finally, summing over the mesh elements yields the desired result. �
Because of the a priori estimate for |||u − uh|||Ω established in [9], Theorem 3.2 implies the same bound for the

reconstructed flux th. A further consequence is that the computable quantity ‖K
1
2 ∇uh + K− 1

2 th‖0,Ω is optimal for the
purpose of a posteriori error estimation; see [5,8] for details including numerical experiments.
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