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Abstract

In this note, we prove that the solution of a backward stochastic differential equation, which involves a subdifferential operator
and associated to a family of reflecting diffusion processes, converges to the solution of a deterministic backward equation and
satisfies a large deviation principle. To cite this article: E.H. Essaky, C. R. Acad. Sci. Paris, Ser. I 346 (2008).
© 2007 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Résumé

Un principe de grandes déviations pour une équation différentielle stochastique rétrograde associée à un opérateur sous-
différentiel. Dans cette Note, nous montrons que la solution d’une équation différentielle stochastique rétrograde progressive
associée à un opérateur sous-différentiel converge vers la solution d’une équation différentielle rétrograde progressive déterministe
et satisfait un principe de grandes déviations. Pour citer cet article : E.H. Essaky, C. R. Acad. Sci. Paris, Ser. I 346 (2008).
© 2007 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction, notations and assumptions

Let (Ω,F , (Ft )t�1)) be a stochastic basis such that F0 contains all P -null sets of F , Ft+ = Ft , ∀t � 1, and
suppose that the filtration is generated by a d-dimensional Brownian motion B . On other hand, let:
• Θ be an open connected bounded subset of R

d , which is such that for a function ψ ∈ C2
b(Rd), Θ = {ψ > 0},

∂Θ = {ψ = 0}, and |∇ψ(x)| = 1, x ∈ ∂Θ . Note that at any boundary point x ∈ ∂Θ , ∇ψ(x) is a unit normal vector to
the boundary, pointing towards the interior of Θ . The above assumptions imply that there exists a constant δ > 0 such
that for all x ∈ ∂Θ , x′ ∈ Θ

2
〈
x′ − x,∇ψ(x)

〉 + δ|x − x′|2 � 0. (1)

• b : Θ → R
d, σ : Θ → R

d×d be functions such that:
(A1) There exists a constant C > 0 such that∣∣b(x)

∣∣ + ∣∣σ(x)
∣∣ � C,

∣∣b(x) − b(x′)
∣∣ + ∣∣σ(x) − σ(x′)

∣∣ � C|x − x′|, ∀x, x′ ∈ Θ.
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(A2) There exists a constant γ > 0 such that: a(x) � γ |x|2,∀x ∈ Θ .
• h ∈ C(Θ;R

k), f ∈ C([0,1] × Θ × R
k × R

k×d;R
k) be functions satisfying the following assumptions:

(A3) There exist constants α ∈ R,K > 0, c > 0 and μ > 0 such that

(i) ∀t,∀x,∀y,∀(z, z′),
∣∣f (t, x, y, z) − f (t, x, y, z′)

∣∣ � μ|z − z′|,
(ii) ∀t,∀x,∀z,∀(y, y′),

〈
y − y′, f (t, x, y, z) − f (t, x, y′, z)

〉
� α|y − y′|2,

(iii) ∀x,∀x′,
∣∣h(x) − h(x′)

∣∣ � c|x − x′|,
(vi) ∀t,∀x,∀y,∀z,

∣∣f (t, x, y, z)
∣∣ � K

(
1 + |y| + |z|), (v)∀x,

∣∣h(x)
∣∣ � K

(
1 + |x|).

• Π : R
k →] − ∞,+∞], be a proper lower semicontinuous convex function such that

(A4) There exists a constant C > 0 such that: Π(h(x)) � C(1 + |x|), ∀x ∈ Θ, Π(y) � Π(0) = 0, ∀y ∈ R
k .

We need also the following notations:
• C[0, T ] denotes the space of continuous functions Φ : [0, T ] → R

d such that f (0) ∈ Θ .
• C[0, T ] denotes the space of continuous functions Ψ : [0, T ] → Θ .
• V[0, T ] denotes the space of functions ρ : [0, T ] → R

d with bounded variation and ρ(0) = 0.
• δΠ denotes the subdifferential operator of the function Π and is defined by

δΠ(u) = {
u∗ ∈ R

k: 〈u∗, v − u〉 + Π(u) � Π(v),∀v ∈ R
k
}
.

Note that the subdifferential operator δΠ : R
k → 2R

k
is a maximal monotone operator, that is

〈u′ − v′, u − v〉 � 0 ∀(u,u′), (v, v′) ∈ δΠ. (2)

For ρ ∈ V[0, T ], |ρ|t denotes the total variation of ρ in the interval [0, t].
Consider the system of decoupled forward-backward stochastic differential equations{

X
s,x,ε
t = x + ∫ t

s
b(X

s,x,ε
r ) dr + √

ε
∫ t

s
σ (X

s,x,ε
r ) dBr + ρ

s,x,ε
t − ρ

s,x,ε
s , 0 � s � t � T ,

ρ
s,x,ε
t = ∫ t

0 ∇ψ(X
s,x,ε
r ) d|ρs,x,ε|r , |ρs,x,ε|t = ∫ t

0 1{Xs,x,ε
r ∈∂Θ} d|ρs,x,ε|r , (3)

{
Y

s,x,ε
t = h(X

s,x,ε
T ) + ∫ T

t
f (r,X

s,x,ε
r , Y

s,x,ε
r ,Z

s,x,ε
r ) dr − ∫ T

t
Z

s,x,ε
r dBr − ∫ T

t
U

s,x,ε
r dr,

(Y
s,x,ε
t ,U

s,x,ε
t ) ∈ δΠ, and E

∫ T

0 Π(Y
s,x,ε
r ) dr < +∞.

(4)

The existence and uniqueness of the strong solution Xs,x,ε , under assumption (A1), for Eq. (3) is standard (see, for
example, Lions and Sznitman [2] or Saisho [5]). It follows also from the result of Pardoux and Rascanu [3] that, under
assumptions (A3) and (A4), there exists a unique triple (Y s,x,ε,Zs,x,ε,Us,x,ε) for Eq. (4).

The objective of this work is to prove that the solution of decoupled forward-backward stochastic differential
equations (3)–(4) converges, as ε goes to 0, to the solution (χs,x, ρs,x, Y s,x,Zs,x,Us,x) of the following decoupled
forward-backward deterministic equation:⎧⎪⎨

⎪⎩
χ

s,x
t = x + ∫ t

s
b(χ

s,x
r ) dr + ρ

s,x
t − ρ

s,x
s , ρ

s,x
t = ∫ t

0 ∇ψ(χ
s,x
r ) d|ρs,x |r , |ρs,x |t = ∫ t

0 1{χs,x
r ∈∂Θ} d|ρs,x |r ,

Y
s,x
t = h(χ

s,x
T ) + ∫ T

t
f (r,χ

s,x
r , Y

s,x
r ,0) dr − ∫ T

t
U

s,x
r dr, (Y

s,x
t ,U

s,x
t ) ∈ δΠ,

and E
∫ T

0 Π(Y
s,x
r ) dr < +∞,

(5)

and satisfies a large deviation principle. Our result is, in fact, a generalization of the work by Rainero [4] where the
case of (ρs,x,ε,Us,x,ε,Π) = (0,0,0) has been considered.

For the sake of simplicity, we put, in general, s = 0. Of course, the results hold true for all s ∈ [0, T ]. We denote
then by Xx,ε := X0,x,ε , Y 0,x,ε := Yx,ε, . . . .

2. Large deviation principle and convergence of the solution of the forward equation

Let Φ ∈ C[0, T ], Ψ ∈ C[0, T ], ρ ∈ V[0, T ] such that

Ψ (t) = Φ(t) + ρ(t), ρt =
t∫
∇ψ(Ψr) d|ρ|r , |ρ|t =

t∫
1{Ψ (r)∈∂Θ} d|ρ|r . (6)
0 0
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For Φ and Ψ defined as above, let Ψ = F(Φ). It is known from Lions and Sznitman [2] or Saisho [5] that F is
continuous. We have the following theorem:

Theorem 2.1. The process Xx,ε given by Eq. (3) satisfies, as ε goes to 0, a large deviation principle with rate function
S(Ψ ) defined by: S(Ψ ) = 1

2 infΦ∈F−1(Ψ )

∫ T

0 (Φ̇(s) − b(Ψ (s)))∗a−1(Ψ (s))(Φ̇(s) − b(Ψ (s))) ds, with the fact that
S(Ψ ) = ∞ if F−1(Ψ ) = ∅ or Φ is not absolutely continuous.

Proof. The result follows by using the contraction principle (see Dembo and Zeitouni [1]) and a large deviation
principle for diffusion processes (see Stroock [7] or [1], see Sheu [6] for other assumptions on Θ). �

Applying Itô’s formula to e−δ(ψ(X
x,ε
t )+ψ(χx

t ))|Xx,ε
t − χx

t |2, where δ is given by the inequality (1), and using the
boundedness of b, σ , ψ , ∇ψ , D2ψ , and Burkholder–Davis–Gundy inequality, we have:

Lemma 2.2. For all ε ∈ ]0,1], there exists a constant C > 0, independent of x and ε, such that

E sup
0�t�T

|Xx,ε
t − χx

t |2 � Cε.

Remark 1. As a consequence of Lemma 2.2, the solution of the reflecting diffusion process Xx,ε converges to the
deterministic path χx in L2.

3. Convergence and large deviation principle for the solution of the backward equation

Let (χ(s,x), ρs,x, Y (s,x),0,U(s,x)) be the solution of deterministic equation (5).
Applying Itô’s formula to |Y s,x,ε

t − Y
s,x
t |2, and using inequality (2), assumption (A3) and Burkholder–Davis–

Gundy inequality we get the following:

Lemma 3.1. ∀ε ∈ ]0,1], there exists a constant C > 0, independent of s, x and ε, such that

E

[
sup

s�t�T

|Y s,x,ε
t − Y

s,x
t |2 +

T∫
s

|Zs,x,ε
r |2 dr

]
� C

[
E

(
X

s,x,ε
T − χ

s,x
T |2) + E

T∫
s

|Xs,x,ε
r − χs,x

r |2 dr

]
.

Remark 2. As a consequence of Lemmas 3.1 and 2.2, we get

E

[
sup

s�t�T

|Y s,x,ε
t − Y

s,x
t |2 +

T∫
s

|Zs,x,ε
r |2 dr

]
� Cε,

where C is a positive constant and then the solution of the BSDE (4) converges to the deterministic solution of the
backward equation of system (5).

We now consider the BSDE in the case k = 1. We want to prove that the process Y s,x,ε satisfies a large deviation
principle. For that reason, we recall the link between Variational Inequality (VI, for short) and BSDE. For all ε � 0,
we consider the following VI{

∂uε

∂t
(t, x) +Lx,εuε(t, x) + f (t, x,uε(t, x), ((∇uε)∗

√
εσ )(t, x)) ∈ δΠ(uε(t, x)), t ∈ ]0, T [, x ∈ Θ,

∂uε

∂n
(t, x) ∈ δΠ

(
uε(t, x)

)
, x ∈ ∂Θ, uε(T , x) = h(x), x ∈ Θ,

(7)

where Lx,ε := ε
2

∑d
i,j=1(σσ ∗)ij ∂2

∂xi∂xj
+ ∑d

i=1 bi
∂

∂xi
is the second order partial differential operator, and at point

x ∈ ∂Θ , ∂
∂n

:= ∑d
i=1

∂ψ
∂xi

(x) ∂
∂xi

. Then we have, for each (t, x) ∈ [0, T ] × Θ , uε(t, x) = Y
t,x,ε
t , both in the sense that

any classical solution of the VI (7) is equal to Y
s,x,ε
t , and Y

s,x,ε
t is, in the case where all coefficients are continuous,
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a viscosity solution of the VI (7) (see Pardoux and Rascanu [3]). Moreover, we have also that Y
s,x,ε
t = uε(t,X

s,x,ε
t ).

Let s ∈ [0, T ] and ε � 0, we define the following applications:

Fε(Ψ ) := [
t → uε(t,Ψt )

]
, t ∈ [s, T ], Ψ ∈ C

([s, T ]) satisfying Eq. (6).

Hence Y
s,x,ε
t = Fε(Xs,x,ε)(t), for all t ∈ [0, T ], and Y s,x,ε = Fε(Xs,x,ε). For ε = 0, u and F stand for u0 and F 0. We

have the following theorem:

Theorem 3.2. Yx,ε satisfies, as ε goes to 0, a large deviation principle with a rate function

S′(Ψ ′) = inf
{
S(Ψ ) | Ψ ′

t = F(Ψ )(t) = u(t,Ψt ),∀t ∈ [0, T ]}.
Proof. In order to apply the same method as for the proof of the contraction principle in Varadhan [8], we just need
to show that Fε , ε � 0 are continuous and {Fε} converges uniformly to F on every compact of C[0, T ], as ε goes to 0
(see [4]). In fact, since uε is continuous, it is not hard to prove that Fε is also continuous. The uniform convergence
of {Fε} is a consequence of Remark 2. Indeed, let K be a compact of C[0, T ], and G = {Ψs,Ψ ∈ K,s ∈ [0, T ]}. Note
that G is a compact of Θ . Hence, from Remark 2, we get

sup
Ψ ∈K

∥∥Fε(Ψ ) − F(Ψ )
∥∥ = sup

Ψ ∈K

sup
s∈[0,T ]

|Y s,Ψs,ε
s − Y s,Ψs

s | � sup
x∈G

sup
s∈[0,T ]

|Y s,x,ε
s − Y s,x

s | � Cε.
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