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Abstract

We study the nonlinear Schrödinger equation −ε2�ψ + V (x)ψ = |ψ |p−1ψ on a compact manifold or on R
n, where V is a

positive potential and p > 1. As ε tends to zero, we prove existence of complex-valued solutions which concentrate along closed
curves and whose phase is highly oscillatory, carrying quantum-mechanical momentum along the limit set. To cite this article:
F. Mahmoudi et al., C. R. Acad. Sci. Paris, Ser. I 346 (2008).
© 2007 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Résumé

Solutions d’une équation de Schrödinger non linéaire portant un moment le long d’une courbe. On étudie l’équation de
Schrödinger non linéaire −ε2�ψ + V (x)ψ = |ψ |p−1ψ sur une variété compacte ou sur R

n, où V est un potentiel positif, régulier
et p > 1. Lorsque ε tend vers zéro, on montre l’existence de solutions à valeurs complexes qui se concentrent le long d’une
courbe fermée et dont la phase est hautement oscillante, portant un moment quantique le long de l’ensemble limite. Pour citer cet
article : F. Mahmoudi et al., C. R. Acad. Sci. Paris, Ser. I 346 (2008).
© 2007 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Version française abrégée

On montre l’existence d’une classe spéciale de solutions d’une équation de Schrödinger (elliptique) non linéaire
−ε2�ψ + V (x)ψ = |ψ |p−1ψ , sur une variété compacte ou sur l’espace euclidien. Ici V représente le potentiel, p un
exposant plus grand que 1 et ε un petit paramètre qui correspond à la constante de Planck. Lorsque ε tend vers zéro
(i.e. dans le cas de la limite semi classique) on montre l’existence de solutions à valeurs complexes qui se concentrent
le long d’une courbe fermée, et dont la phase est hautement oscillante. Physiquement, ces solutions portent un moment
quantique le long de la courbe limite. Ce résultat répond à une conjecture énoncée dans [2] pour le cas où l’ensemble
limite est unidimensionnel et prolonge un résultat précédent dans [4] (où des solutions à valeurs réelles pour n = 2
ont été construites). L’idée de la démonstration est de construire dans un premier temps une bonne solution approchée
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ψ̃ en utilisant la stationnarité et la non-dégénérescence de la courbe, les vraies solutions peuvent alors être trouvées
en perturbant ψ̃ et en utilisant un théorème de point fixe pour les applications contractantes. On montre aussi que
l’opérateur linéarisé au voisinage de ψ̃ admet un noyau non trivial dû à l’invariance de l’équation par translation et
par rotation complexe, ceci donne lieu à un phénomène de résonance. Pour pouvoir s’affranchir de cette difficulté, on
utilise une méthode basée sur une réduction de Lyapunov–Schmidt (le paramètre ε est choisi de telle sorte qu’il évite
certaines valeurs critiques).

1. Introduction

In this Note we are concerned with concentration phenomena for solutions to the singularly-perturbed elliptic
problem:

−ε2�gψ + V (x)ψ = |ψ |p−1ψ on M, (NLSε)

where M is an n-dimensional compact manifold (or the flat Euclidean space R
n), V a smooth positive function on

M satisfying 0 < V1 � V � V2; ‖V ‖C3 � V3, ψ a complex-valued function, ε > 0 a small parameter, p an exponent
greater than 1 and where �g stands for the Laplace–Beltrami operator on M .

(NLSε) arises from the study of the Nonlinear Schrödinger Equation:

ih̄∂ψ̃/∂t = −h̄2�ψ̃ + V (x)ψ̃ − |ψ̃ |p−1ψ̃ on M × [0,+∞), (1)

where ψ̃ = ψ̃(x, t) is the wave function, V a potential, and h̄ the Planck constant. A special class of solutions to (1)

is constituted by the functions whose dependence on the variables x and t is of the form ψ̃(x, t) = e
−i ωt

h̄ ψ(x). Such
solutions are called standing waves and up to a substitution of V (x) by V (x) − ω, they satisfy (NLSε), for ε = h̄.
An interesting case is the semiclassical limit ε → 0, where one should expect to recover the Newton law of classical
mechanics. In particular, near stationary points of the potential, one is lead to search highly concentrated solutions,
which could mimic point-particles at rest. There is an extensive literature about this topic, and for brevity we refer
the interested readers to Chapter 8 in [1] and the references therein. However it has been conjectured for some time
that (NLSε) might exhibit solutions concentrating along curves or in general higher-dimensional sets (see [14] and
[13] for related issues). Recently some answers have been given in [2] and [4] (see also references therein) concerning
existence of solutions whose limit profile, once scaled properly in ε, is independent of some of the variables. In this
Note, and in more detail in [7,8], we consider solutions with oscillatory phase, concentrating along curves and carrying
quantum-mechanical momentum along the limit set.

2. Main results

Our aim is to construct a new type of solutions to (NLSε), which concentrate along a curve γ in M , and whose
phase is highly oscillatory. These functions are complex-valued and their profile (after a scaling in ε) near any point
x0 in the image of γ , is asymptotic to a solution of,

−�φ + V (x0)φ = |φ|p−1φ in R
n, (2)

decaying exponentially to zero away from the xn axis and periodic in xn. More precisely, we take,

φ(x′, xn) = e−if̂ xn Û (x′), x′ = (x1, . . . , xn−1),

where f̂ is a constant and Û (x′) a real function. With this choice of φ, the function Û satisfies the equation:

−�Û + (
f̂ 2 + V (x0)

)
Û = |Û |p−1Û in R

n−1, (3)

and decays to zero at infinity. Solutions to (3) can be found by considering the (real) function U ∈ C0(R
n−1) satisfying

−�U + U = Up in R
n−1 (which is known to exist if p < n+1

n−3 ), and using the scaling

Û (x′) = ĥU(k̂x′), ĥ = (
f̂ 2 + V (x0)

) 1
p−1 , k̂ = (

f̂ 2 + V (x0)
) 1

2 . (4)

In the above formulas the constant f̂ can be taken arbitrarily, while ĥ, k̂ have to be chosen accordingly, depending on
V (x0). In fact f̂ is proportional to the speed of the phase oscillation, and is physically related to the velocity of the
quantum-mechanical particle represented by the wave function.
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We are aware of only one paper in this direction, [3], where the case of an axially-symmetric potential is treated,
and solutions are found via separation of variables: our goal here is to treat this phenomenon in a generic situation,
without any symmetry restriction. We also refer to [14] for some related issues.

If we look for a solution ψε to (NLSε) with this profile, then this should qualitatively behave like:

ψε(s, ζ ) = e−i
f (s)

ε h(s)U
(
k(s)ζ/ε

)
, (5)

where s stands for the arc-length parameter of γ , and ζ for a system of normal geodesic coordinates. For having more
flexibility, we chose the speed of phase oscillation f (s) to depend on the point γ (s), while h(s), k(s) should satisfy a
formula similar to (4) (with obvious modifications).

The function f (s) can be determined using an expansion of (NLSε) at order ε: one can show that

f ′(s) � Ahσ (s) with σ = (n − 1)(p − 1)/2 − 2, (6)

where A is a constant to be specified. At this point, only the curve γ has to be determined. First, we notice that
the phase should be a periodic function in the length of the curve, and therefore it is natural to work in the class of
loops Γ := {γ : R → M, periodic: A

∫
γ

h(s)σ ds = constant}. Problem (NLSε) has a variational structure, with Euler

functional Eε(ψ) = 1
2

∫
M

(ε2|∇gψ |2 + V (x)|ψ |2) − 1
p+1

∫
M

|ψ |p+1. Making the ansatz (5), by a scaling argument
one finds:

Eε(ψ) � εn−1
∫
γ

h(s)θ ds, with θ = p + 1 − (p − 1)(n − 1)/2, (7)

therefore a candidate limit curve γ should be a critical point of the functional
∫
γ

h(s)θ ds restricted to Γ . One can
check that the extremality condition is the following:

∇NV = H
(
hp−1(p − 1)/θ − 2A2h2σ

)
, (8)

where ∇NV represents the normal gradient of V and H the curvature of γ . By a long but straightforward calculation,
one can find a natural nondegeneracy condition for stationary points, which is expressed by the invertibility of the
operator:

V 	→ −
(

hθ − 2A2θ

p − 1
hσ

)
V̈m − θ

(
hθ−1 − 2A2σ

p − 1
hσ−1

)
h′V̇m + θ

p − 1
h−σ

(
(∇N)2V

)[V,Em]

+ 1

2

(
hθ − 2A2θ

p − 1
hσ

)(∑
j

(∂2
jmg11)Vj

)
− 2AA′

1
(θ − σ)hp−1

[(p − 1)hθ − 2σA2hσ ]H
m

+ Hm〈H,V〉
[
−(p − 1)

(
3 + σ

θ

)
h2θ − 16σθA4

p − 1
h2σ + 2A2(5σ + 3θ)hθ+σ

]/[
(p − 1)hθ − 2A2σhσ

]
, (9)

acting on normal sections V to γ . Here A′ stands for the variation of A with respect to V , and we refer to [7] for the
other notations, which are of geometric nature. We can now state our main result:

Theorem 2.1. Let M be a compact n-dimensional manifold, let V :M → R be a smooth positive function and let
1 < p < n+1

n−3 . Let γ be a simple closed curve in M ; then there exists a positive constant A0, depending on V |γ and
p for which the following holds. If 0 � A < A0, if γ satisfies (8) and the operator in (9) is invertible on the normal
sections of γ , there is a sequence εj → 0 such that problem (NLSεj

) possesses solutions ψεj
having the asymptotics

in (5), with f satisfying (6).

Apart from the smallness assumption on A, Theorem 2.1 improves the result in [3]. In fact, not only we remove the
symmetry condition (which is the main issue, as we shall see), but also the characterization of the limit set is explicit,
the assumptions on V are purely local, and the upper bound on p is sharp (by a Pohozaev identity for (3)). Our result
also extends a previous one in [4] (where real-valued solutions are found for n = 2 only) and show the validity of
a conjecture in [2] for 1-dimensional limit sets: in fact as a consequence of Theorem 2.1, one can easily prove the
following result:
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Corollary 2.2. Let (M,g), V , p be as in Theorem 2.1. Let γ be a simple closed curve which is a nondegener-

ate geodesic with respect to the weighted metric V
p+1
p−1 − n−1

2 g. Then there is a sequence εj → 0 such that problem
(NLSεj

) possesses real-valued solutions ψεj
concentrating near γ as j → +∞ and having the asymptotic behavior

ψεj
(s, ζ ) � V (γ (s))

1
p−1 U(V (γ (s))

1
2 ζ/ε), where s stands for the arc-length parameter of γ , and ζ for a system of

normal geodesic coordinates.

Corollary 2.2 gives also a criterion for the applicability of Theorem 2.1: in fact, starting from a nondegenerate
geodesic in the weighted metric, by the implicit function theorem for A sufficiently small one obtains a curve for
which (8) and the invertibility of (9) hold. In particular, when V is constant, one can start with nondegenerate close
geodesics on M in the ordinary sense.

Remarks.

(i) The statement of Theorem 2.1 remains unchanged if we replace M by R
n (or with an open manifold asymp-

totically Euclidean at infinity) and we assume V to be bounded between two positive constants and for which
‖∇ lV ‖ � Cl , l = 1,2,3, for some positive constants Cl .

(ii) The existence of solutions to (NLSε) only for a suitable sequence εj → 0 is related to a resonance phenomenon,
briefly explained below. The result can be extended to a sequence of intervals in the parameter ε approaching
zero but, at least with our proof, we do not expect to find existence for all ε.

(iii) The restriction on the exponent p is natural, since (3) admits solitons if and only if p is subcritical with respect
to the dimension n − 1.

(iv) The smallness requirement on A is technical and we believe this condition could be relaxed. Anyway, for n+2
n−2 �

p < n+1
n−3 , A should have an upper bound depending on V and p, to get solvability of both (4) and (6), see

Remark 2.3 in [7].
(v) In a general (nonsymmetric) setting, related results have been achieved in [6] (see also [5]) and [9–11].

3. Sketch of the proof of Theorem 2.1

In this section we give the main ideas of the proof of Theorem 2.1, referring to [7] and [8] for full details. The
first step in proving our result is to find good approximate solutions using the stationarity and the nondegeneracy
conditions on the curve γ . Then, true solutions can be found by a perturbation argument and applying the contraction
mapping theorem. After a dilation by a factor 1

ε
, we define f̃ = f + εf1, we tilt the coordinates orthogonal to γ by a

normal section Φ (setting z = ζ + Φ) and we look at approximate solution of the form

ψ̃(s, z) = e−i
f̃ (εs)

ε
{
h(εs)U

(
k(εs)z

) + ε[wr + iwi] + ε2[vr + ivi]
}
, s ∈ [

0,L(γ )/ε
]
, z ∈ R

n−1, (10)

for some corrections wr,wi, vr , vi (here we have set s = εs). To get a formal solvability at order ε first and then at
order ε2, wr , wi , vr and vi have to satisfy equations of the form Lrwr = Fr , Liwi = Fi , Lrvr = F̃r , Livi = F̃i ,
where

Lrv = −�zv + V (s)v − ph(s)p−1U
(
k(s)z

)p−1
v;

Liv = −�zv + V (s)v − h(s)p−1U
(
k(s)z

)p−1
v,

and where Fr , Fi , F̃r , F̃i are given data which depend on V , γ , s, A, Φ and f1, see Section 3 in [7]. The operators Lr

and Li are Fredholm (and symmetric) from H 2(Rn−1) into L2(Rn−1), and the above equations for the corrections can
be solved provided the right-hand sides are orthogonal to the kernels of these operators. It turns out that the kernels
of Lr and Li produce a sequence of eigenvalues of the linearized operator Lε (at ψ̃ ) which behave qualitatively like
ε2j2 and for small values of j these become resonant. With an accurate expansion of these eigenvalues, one finds that
the nondegeneracy assumption on (9) prevents each of them to vanish: anyway, a direct application of the implicit
function theorem is not possible since a further resonance phenomenon occurs. This arises from the fact that Lr also
possesses a negative eigenvalue η0, which generates an extra sequence of eigenvalues for Lε , qualitatively of the form
η0 + ε2j2, j ∈ N. This resonance is typical of concentration for (NLSε) along sets of positive dimension, and the only
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hope to get invertibility is to choose the values of ε appropriately. Indeed, differently from the previous sequence of
eigenvalues, this new one causes a divergence of the Morse index when ε tends to zero, and the presence of a kernel
for some epsilon’s is unavoidable. We then have three possible resonant modes, two of them for small values of the
index j , with eigenvectors ∂lU(k(s)z), l = 2, . . . , n, and iU(k(s)z) and a third one for j of order 1

ε
, precisely when

η0 + ε2j2 = 0. We notice that, under symmetry assumptions (as in [2] and [3]) resonance can be avoided working
with invariant functions.

To deal with the general case, two techniques have been used: the first, employed in [10], is based on a theorem by
T. Kato for tracking the possibly resonant eigenvalues, and their dependence on ε. The second, used in [4] and [12],
is instead based on a more direct approach, by Lyapunov–Schmidt reductions. The latter seems to apply only to the
case of one-dimensional limit sets but it turns out to be quite convenient, also for the present case: here we actually
combine both the methods.

For δ > 0 small we introduce a set Kδ consisting of approximate eigenfunctions of Lε , see Subsection 2.3 in [8].
We next consider the subspace Hε of functions ψ̂ which are orthogonal to Kδ , and show that there is invertibility
under these restrictions. This indeed allow us to solve (1) up to a Lagrange multiplier in Kδ . Our next task will be then
to annihilate this Lagrange multiplier: this can be done choosing an approximate solution Ψ̃ε (more accurate than the
one in (10)) which depends on suitable parameters: besides the normal section Φ , a phase factor f2 and a complex-
valued function β . The latter parameters correspond to different components of Kδ , and are related to the kernels of
Lr (+ε2j2) and Li (+ε2j2). The function β in particular is highly oscillatory, and takes care of the resonances due to
the fast Fourier modes, see [8], Section 4.

In this way, using a Lyapunov–Schmidt reduction onto the set Kδ and considering the projections onto its compo-
nents, we are reduced (roughly) to solve a system of three second-order ordinary differential equations with periodic
conditions in [0,L(γ )]. The operators acting on Φ and f2 are rather easy to deal with (to prove invertibility in ap-
propriate functional spaces) using our assumptions on the curve γ , and a natural choice for the functional spaces to
work with (for Φ and f2) is H 2[0,L(γ )]. Instead, the operator acting on β is more delicate, it is “qualitatively” of
the form Λ0β := −ε2β ′′(s) + λ(s)β on [0,L(γ )], with periodic boundary conditions, where λ is a negative function.
This operator is precisely the one related to the peculiar resonances described above. In particular it is resonant on
frequencies of order 1

ε
, and this requires to choose a norm for β which is weighted in the Fourier modes. For operators

like Λ0 there is in general a sequence of epsilon’s for which a nontrivial kernel exists. Using Kato’s theorem, as in
[6,9–11], we can estimate the derivatives of the eigenvalues with respect to ε, showing that for several values of this
parameter Λ0 is invertible. Once we have this, we apply the contraction mapping theorem to solve the bifurcation
equation as well. This yields a solution of our equation (NLSε).

The first part of the complete paper is devoted to justify assumptions (8), (9) and to find approximate solutions,
while the second part contains the proof of the existence result.
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