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Abstract

In this Note we prove that in two and three space dimensions, the symmetric and non-symmetric discontinuous Galerkin methods
for second order elliptic problems are stable when using piecewise linear elements enriched with quadratic bubbles without any
penalization of the interelement jumps. The method yields optimal convergence rates in both the broken energy norm and, in the
symmetric case, the L2-norm. Moreover the method can be written in conservative form with fluxes independent of any stabilization
parameter. To cite this article: E. Burman, B. Stamm, C. R. Acad. Sci. Paris, Ser. I 346 (2008).
© 2007 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Résumé

Les méthodes de Galerkine discontinue symétrique et non-symétrique stabilisées par des bulles quadratiques. Dans
cette Note, nous montrons qu’en deux et trois dimensions d’espace, les méthodes de Galerkine discontinue symétrique ou non-
symétrique pour les problèmes elliptiques d’ordre deux sont stable pour l’ordre polynomial p = 1 sans devoir introduire de terme
de stabilisation si l’espace est enrichi par des bulles quadratiques. La méthode fournit des ordres de convergence optimaux dans la
norme d’énergie brisée et, pour la formulation symétrique, dans la norme L2 et peut être écrite sous forme conservative avec des
flux indépendants de tout paramètre de stabilisation. Pour citer cet article : E. Burman, B. Stamm, C. R. Acad. Sci. Paris, Ser. I
346 (2008).
© 2007 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

The Discontinuous Galerkin (DG) method is a classical technique to approximate elliptic and hyperbolic PDE’s.
For elliptic PDE’s, two of the most popular methods are the Symmetric Interior Penalty (SIP) method introduced by
Baker [3] and Arnold [1] and the non-symmetric DG method introduced by Oden, Babuška and Baumann [9]. One
attractive feature of the latter method is that, because of the absence of penalty terms, it can be written in conservative
form with fluxes that are independent of numerical parameters. Moreover, the non-symmetric DG method is proven
to yield optimal convergence estimates in the broken energy norm in one [7] and two space dimensions [8,10] for
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polynomial orders p � 2, while for p = 1, penalty terms must be introduced to grant stability and optimal convergence
rates in the broken energy norm, but the conservative fluxes then depend on the penalty parameter.

Working with the SIP method instead of the non-symmetric DG method presents the twofold advantage of dealing
with symmetric linear systems and of ensuring optimal convergence rates also in the L2-norm. The difficulty with the
SIP method is that stability usually relies on the use of penalty parameters that will subsequently enter the expression
of the conservative fluxes.

The purpose of this Note is to fill the gap between symmetric and non-symmetric DG methods in the special case
of piecewise linear approximation enriched with quadratic bubbles. We prove that both the non-symmetric and the
symmetric DG method without any penalty leads to optimal convergence rates in the broken energy norm and in
the L2-norm (only for the symmetric version) in two and three space dimensions. A similar analysis for p � 2 was
proposed in the one-dimensional case in [5] for the symmetric version. In the non-symmetric case, Brezzi and Marini,
recently proposed an analysis, also using bubble-stabilization [4]. We also refer to [2] for an overview of stabilization
techniques for DG-methods. In this Note proofs are only sketched and we refer to [6] for full detail.

2. Model problem and method formulation

Let Ω be a convex polygon (polyhedron in three space dimensions) in R
d , d = 2,3, with outer normal n. Let K

be a subdivision of Ω ⊂ R
d into non-overlapping d-simplices κ . We consider the following elliptic problem with

homogenous Dirichlet boundary conditions:
Find u :Ω → R such that{

−�u = f, in Ω,

u = 0, on ∂Ω.
(1)

Assume that K is shape-regular, does not contain any hanging node and covers Ω exactly. Let Fi denote the set of
interior faces ((d − 1)-manifolds) of the mesh, i.e. the set of faces that are not included in the boundary ∂Ω . The
set Fe denotes the faces that are included in ∂Ω and define F = Fi ∪ Fe. For an element κ ∈ K or a face F ∈ F
let hκ resp. hF denotes its diameter. Set h = maxκ∈K hκ and let h̃ and h̃F be two functions such that h̃|κ = hκ and
h̃F |F = hF .

For a subset R ⊂ Ω or R ⊂ F , (·, ·)R denotes the L2(R)-scalar product, ‖ · ‖R = (·, ·)1/2
R the corresponding norm,

and ‖ · ‖s,R the Hs(R)-norm. The element-wise counterparts will be distinguished using the discrete partition as
subscript, for example (·, ·)K = ∑

κ∈K(·, ·)K . For s � 1, let Hs(K) be the space of piecewise Sobolev Hs -functions
and denote its norm by ‖ · ‖s,K.

For v ∈ H 1(K), τ ∈ [H 1(K)]d and an interior face F = κ1 ∩ κ2 ∈Fi , where κ1 and κ2 are two distinct elements of
K with respective outer normals n1 and n2, define the jump and average by

[v] = (v|κ1n1 + v|κ2n2), {v} = 1
2 (v|κ1 + v|κ2),

[τ ] = (τ |κ1 · n1 + τ |κ2 · n2), {τ } = 1
2 (τ |κ1 + τ |κ2).

On outer faces F = ∂κ ∩ ∂Ω ∈ Fe, for some κ ∈ K with outer normal n, the jump and the average are defined as
[v] = v|F n and {v} = v|F resp. [τ ] = τ |F · n and {τ } = τ |F . Define the piecewise affine discontinuous finite element
space by

V 1
h = {

vh ∈ L2(Ω): vh|κ ∈ P1(κ), ∀κ ∈K
}

and the enriched space by

Vbs = V 1
h ⊕ V b, with V b = {

v ∈ L2(Ω): v(x)|κ = ακx · x; where ακ ∈ R
}
,

where x = (x1, . . . , xd) denotes the physical variables. We may then write the finite element formulation: Find
uh ∈ Vbs such that

as(uh, vh) = (f, vh)K ∀vh ∈ Vbs, (2)

where

as(uh, vh) = (∇uh,∇vh)K − ({∇uh}, [vh]
) − s

({∇vh}, [uh]
)

, (3)
F F
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for s ∈ {−1,1}. This formulation is consistent and in the case s = 1 also adjoint consistent. For the analysis of this
method we introduce the triple norm

|||vh|||2 = ‖vh‖2
1,K + ∥∥h̃

− 1
2

F [vh]
∥∥2
F .

2.1. Properties of the enriched space Vbs

The motivation for the particular form of the enriched space is given in the following lemma. The key idea is that
the gradient of a function in Vbs restricted to an element is in fact locally in the Raviart–Thomas space. Let RT0 denote
the space of Raviart–Thomas elements of order zero.

Lemma 2.1. For all wh ∈ Vbs there holds that ∇wh|κ ∈ RT0(κ), and for all rh ∈ RT0(κ) there exists wh ∈ Vbs such
that ∇wh|κ = rh, for all κ ∈K.

Proof. See [6]. �
In particular this implies that ∇uh|κ · nF is constant on each face F ∈ κ .

2.1.1. Projection
The key result for the stability of the method is the existence of we the following projection. We let v|F denote the

average of the function v over the face F .

Lemma 2.2 (Interpolant). Let uh ∈ Vbs be a fixed function. Then there exists a unique wh ∈ Vbs such that∫
κ

wh dx = 0 ∀κ ∈K, (4)

{∇wh}|F · nF = h−1
F [uh] · nF ∀F ∈F , (5)∫

F

{wh} = 0 ∀F ∈Fi . (6)

In addition the following a priori estimates holds

‖∇wh‖K � c
∥∥h̃

− 1
2

F [uh]
∥∥
F and |||wh||| � c|||uh|||. (7)

Proof. Let us first observe that the number of conditions on the projection is equal to the number of unknowns. The
dimension of the finite element space Vbs is (d +2)Nel where Nel denotes the number of elements in the mesh. On the
other hand condition (4) enforces Nel constraints whereas conditions (5) and (6) demand NF +NFi

constraints where
NF and NFi

denote the number of the number of faces resp. the number of interior faces of the mesh. Observing that
NF + NFi

= (d + 1)Nel implies directly a square linear system to determine the projection. Since wh has zero mean
over each element it satisfies the following strong Poincaré inequality

‖wh‖K � c‖h̃∇wh‖K. (8)

Now, we prove that any solution to the linear system (4)–(6) satisfies the a priori error estimate (7). Integrating by
parts and using the properties of wh, it follows that

‖∇wh‖2
K = − (�wh,wh)K︸ ︷︷ ︸

=0

+({∇wh}, [wh]
)
F + ([∇wh], {wh}

)
Fi︸ ︷︷ ︸

=0

= (
h̃−1
F [uh], [wh]

)
F �

∥∥h̃
− 1

2
F [uh]

∥∥
F

∥∥h̃
− 1

2
F [wh]

∥∥
F � c

∥∥h̃
− 1

2
F [uh]

∥∥
F‖∇wh‖K

since {∇wh} and [∇wh] are constant along each face (see Lemma 2.1) and using a trace inequality followed by (8).
The estimate (7) now is an immediate consequence of (8).
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Since the linear system is square, existence and uniqueness of a solution of the linear system are equivalent. Let us
denote by Aw = b the square linear system and assume that there is a vector w1 and w2 such that Awi = b, i = 1,2.
Further let us denote the difference between them by e = w1 − w2 and therefore Ae = 0. The a priori estimate (7)
implies that e = 0 and thus the solution is unique and hence the matrix is regular. �
2.2. Stability and convergence of the bubble enriched DG-method

The stability of the bubble enriched DG-method is obtained by the satisfaction of the following inf-sup condition:

Theorem 2.3 (Discrete inf–sup condition). There exists a constant c > 0 independent of h such that for all uh ∈ Vbs

there holds

c|||uh||| � sup
vh∈Vbs

as(uh, vh)

|||vh||| , for s ∈ {−1,1}.

Proof. First we take vh = uh in a standard fashion and use that c‖h− 1
2

F [uh]‖2
F � ‖h− 1

2
F [uh]‖2

F + ‖∇uh‖2
K.

as(uh,uh) = ‖∇uh‖2
K − (1 + s)

({∇uh}, [uh]
)
F � 1

2‖∇uh‖2
K − cu(1 + s)2

∥∥h̃
− 1

2
F [uh]

∥∥2
F . (9)

Second let wh denote the projection of Lemma 2.2, it follows that

as(uh,wh) = −(�uh,wh)K + ([∇uh], {wh}
)
Fi

− s
({∇wh}, [uh]

)
F = −s

∥∥h̃
− 1

2
F [uh]

∥∥2
F . (10)

Combining the results (9) and (10) we may take vh = uh − s( 1
2 + cu(1 + s)2)wh to obtain after an application of

a Poincaré inequality for piecewise H 1-functions that as(uh, vh) � 1
2 |||uh|||2. We conclude by using (7) to show that

|||vh||| � c|||uh|||. �
Optimal convergence now follows in a standard fashion using the discrete inf-sup condition of Theorem 2.3,

Galerkin orthogonality and approximation.

Theorem 2.4. Let u ∈ H 2(Ω) be the solution of (1) and uh the solution of (2)

|||u − uh||| � ch‖u‖2,K and if s = 1 ‖u − uh‖0,Ω � ch2‖u‖2,K.
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