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Abstract

We establish an approximation result to the solution of a semi linear stochastic partial differential equation with a Neumann
boundary condition. Our approach is based on the theory of backward doubly stochastic differential equations. To cite this article:
N. Mrhardy, C. R. Acad. Sci. Paris, Ser. I 346 (2008).
© 2007 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Résumé

Un résultat d’approximation pour les EDPS avec condition de type Neumann. Nous établissons un résultat d’approximation
pour les équations aux dérivées partielles stochastiques nonlinéaires avec conditions de Neumann. Pour ce faire, nous utilisons la
théorie des équations différentielles doublement stochastiques rétrogrades. Pour citer cet article : N. Mrhardy, C. R. Acad. Sci.
Paris, Ser. I 346 (2008).
© 2007 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction and preliminaries

The aim of this Note is to establish an approximation result to the solution of the following Neumann problem:⎧⎨
⎩

∂u(t,x)
∂t

+ Lu(t, x) + f
(
t, x, u(t, x), σ ∗(x)∇u(t, x)

) + g
(
t, x, u(t, x)

)←−−
dBt = 0, (t, x) ∈ [0, T ] × D,

u(T , x) = h(x), x ∈ D,
∂u
∂n

(t, x) = 0, x ∈ ∂D,

(1)

where T > 0 is a fixed terminal time and L is defined by

L = 1

2

d∑
i,j=1

(
σ(x)σ ∗(x)

)
i,j

∂2

∂xi∂xj

+
d∑

i=1

bi(x)
∂

∂xi

.

Here
←−−
dBs denotes the classical backward Itô integral with respect to the Brownian motion B . D is an open, connected

and bounded subset of R
d , f , g, h, b and σ are some measurable functions.
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To put our result in context, we note that, if g = 0, the result of this Note is contained in the one of Boufoussi and
Casteren [1] giving an approximation result for PDEs with nonlinear Neumann boundary conditions. They used the
S-topology to prove a weak convergence result for a sequence of generalized BSDE. This method is difficult to adapt
to SPDEs with nonlinear Neumann boundary conditions because of the presence of the backward stochastic integral.

Our approach is based on the connection between backward doubly stochastic differential equations (in short
BDSDEs) and stochastic partial differential equations (SPDEs). This topic has been initiated by Pardoux and Peng
[6] in the case where the solutions of the SPDEs are regular and extended later by Buckdahn and Ma [3] to the
case of stochastic viscosity solutions. Recently, Boufoussi, Mrhardy and van Casteren [2] have given a probabilistic
representation to stochastic viscosity solutions of SPDEs with nonlinear Neumann boundary conditions by using the
generalized BDSDEs related to reflected diffusions.

1.1. Background

More precisely, we consider two independent d-dimensional Brownian motions (d � 1), {Wt,0 � t � T } and
{Bt ,0 � t � T } defined on the complete probability space (Ω1,F1,P1) and (Ω2,F2,P2) respectively. For any process
(Us : 0 � s � T ) defined on (Ωi,Fi ,Pi ) (i = 1,2), we denote FU

s,t := σ {Ur − Us, s � r � t} and FU
t := FU

0,t . More-

over, we define Ω � Ω1 × Ω2,F � F1 ⊗ F2 and P � P1 ⊗ P2, and we put Ft � FW
t ⊗ FB

t,T ∨ N , where N is the
collection of P-null-sets. We notice that the family of σ -algebras F = {Ft }0�t�T is not a filtration.

Suppose D is a smooth domain, then one may characterize D and its boundary ∂D by D = {φ > 0}, and ∂D = {φ =
0} where φ is a twice continuously differentiable and bounded function (φ ∈ C2

b(Rd)) and for all x ∈ ∂D, ∇φ(x) is
the interior unit normal vector at x. We introduce the function ρ ∈ C1

b(Rd) such that ρ = 0 in D, ρ > 0 in R
d\D and

ρ(x) = (d(x,D))2 in a neighborhood of D such < ∇φ(x),∇ρ(x) >� 0,∀x ∈ R
d .

Let b : R
d → R

d and σ : R
d → R

d×d be two globally Lipschitz functions, i.e. for some K > 0 and all x, y ∈ R
d :∣∣b(x) − b(y)

∣∣ + ∥∥σ(x) − σ(y)
∥∥ � K|x − y|.

According to Lions and Sznitman [4], for each x ∈ D, there exists a unique pair of progressively measurable processes
(Xs, ks) with values in D × R+ such that

(i) Xt,x
s = x +

s∫
t

b
(
Xt,x

r

)
dr +

s∫
t

σ
(
Xt,x

r

)
dWr +

s∫
t

∇φ
(
Xt,x

r

)
dkt,x

r , for t � s � T ,

(ii) kt =
t∫

0

I{Xt,x
s ∈∂D} dkt,x

s , and kt,x
. is increasing. (2)

Boufoussi et al. [2] have proven, under mild conditions on f and g which we will specify below, that the following
BDSDE has an unique solution

Y t,x
s = h

(
X

t,x
T

) +
T∫

s

f
(
r,Xt,x

r , Y t,x
r ,Zt,x

r

)
dr +

T∫
s

g
(
r,Xt,x

r , Y t,x
r ,Zt,x

r

)←−−
dBr −

T∫
s

Zt,x
r dWr. (3)

Moreover, u(t, x) := Y
t,x
t is a FB

t,T measurable function which is a stochastic viscosity solution to (1). Then to ap-
proach u we are interested to approaching Eq. (3). To this end, we will use an approximation procedure of reflected
diffusion Xt,x by a penalization method. This method is due to Menaldi [5] and consists in considering the following
sequence of SDEs defined by: n � 1,

(i) Xn,t,x
s = x +

s∫
t

b
(
Xn,t,x

r

)
dr +

s∫
t

σ
(
Xn,t,x

r

)
dWr − n

s∫
t

δ
(
Xn,t,x

s

)
ds, for t � s � T ,

(ii) x ∈ D, (4)

where δ is the penalization term defined by δ(x) := ∇ρ(x).
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Theorem 1.1. Eq. (2) has a unique solution. Moreover, for every 1 � p < ∞,

E
[

sup
t�s�T

∣∣Xn,t,x
s − Xt,x

s

∣∣p]
→ 0, as n → ∞,

and the limit is uniform in x ∈ D.

1.2. Assumptions

Let f : Ω2 ×[0, T ]×D×R×R
d → R, and g : Ω2 ×[0, T ]×D×R×R

d → R
d , be two progressively measurable

functions with the property that there exist constants c > 0 and 0 < α < 1 such that for any (x1, y1, z1), (x2, y2, z2) ∈
D × R × R

d , the following hypotheses are satisfied:

(H1) |f (t, x, y, z) + g(t, x, y, z)| � K(1 + |y| + |x| + ‖z‖).
(H2)

{ |f (t, x1, y1, z1) − f (t, x2, y2, z2)|2 � c(|y1 − y2|2 + |x1 − x2|2 + ‖z1 − z2‖2),

|g(t, x1, y1, z1) − g(t, x2, y2, z2)|2 � c|y1 − y2|2 + c|x1 − x2|2 + α‖z1 − z2‖2.

(H3) Let h : D → R be a continuous function, such that for some constant K > 0,∣∣h(x)
∣∣ � K

(
1 + |x|) ∀x ∈ D.

2. The main results

For any fixed n � 1, we consider the following sequence of SPDEs: ∀(t, x) ∈ [0, T ] × R
d{

∂un(t,x)
∂t

+ Lnun(t, x) + f
(
t, x, un(t, x), σ ∗(x)∇un(t, x)

) + g
(
t, x, un(t, x)

)←−−
dBt = 0,

un(T , x) = h(x),
(5)

where Ln := L − nδ(x)∇ . Let (X
n,t,x
s , s ∈ [t, T ]) be the unique solution to the SDE (4), it was shown in [3] that

un(t, x) := Y
n,t,x
t is a stochastic viscosity solution to the SPDE (5), where (Y

n,t,x
s ,Z

n,t,x
s ) is the unique solution the

following BDSDE:

Yn,t,x
s = h

(
X

n,t,x
T

) +
T∫

s

f
(
r,Xn,t,x

r , Y n,t,x
r ,Zn,t,x

r

)
dr +

T∫
s

g
(
r,Xn,t,x

r , Y n,t,x
r ,Zn,t,x

r

)←−−
dBr −

T∫
s

Zn,t,x
r dWr.

The existence and the uniqueness of the above equation is given in [6]. By using the connection between BDSDEs
and SPDEs proved in [2] and [3], we will show that un(t, x) converges almost surely, as n goes to infinity, to u(t, x)

which is a stochastic viscosity solution of (1). Indeed, we shall assume the following condition:

(H) g ∈ C0,2,3
b

([0, T ] × D × R;R
d
)
.

The main result is the following:

Theorem 2.1. Suppose (H1)–(H3) and (H) are satisfied. Then, for all (t, x) ∈ [0, T ] × D , we have

un(t, x) → u(t, x) as n → ∞, P-a.s.

Our basic tool for the proof of Theorem 2.1 is the following convergence result:

Theorem 2.2. Under the assumptions (H1)–(H3), we have for all 0 � t � T

E

(
sup

t�s�T

∣∣Yn,t,x
s − Y t,x

s

∣∣2 +
T∫

t

∥∥Zn,t,x
s − Zt,x

s

∥∥2 ds

)
→ 0, as n → ∞.

Moreover, we have the following convergence:

Yn,t,x
s → Y t,x

s , as n → ∞, P-a.s.
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Proof. For n � 1, we put 	Ys := Y
n,t,x
s − Y

t,x
s and 	Zs := Z

n,t,x
s − Z

t,x
s . By Itô’s formula we have

|	Ys |2 +
T∫

s

‖	Zr‖2 dr = ∣∣h(
X

n,t,x
T

) − h
(
X

t,x
T

)∣∣2 + 2

T∫
s

〈
	Yr,f

(
r,Xn,t,x

r , Y n,t,x
r ,Zn,t,x

s

)

− f
(
r,Xt,x

r , Y t,x
r ,Zt,x

s

)〉
ds + 2

T∫
s

〈
	Ys,g

(
s,Xn,t,x

s , Y n,t,x
s ,Zn,t,x

s

) − g
(
s,Xt,x

s , Y t,x
s ,Zt,x

s

)〉←−−
dBs

+
T∫

t

∥∥g
(
s,Xn,t,x

s , Y n,t,x
s ,Zn,t,x

s

) − g
(
s,Xt,x

s , Y t,x
s ,Zt,x

s

)∥∥2 ds − 2

T∫
t

〈	Ys,	Zs〉dWs. (6)

Taking expectation, we obtain by using assumption (H2)

E

(
|	Ys |2 + 1 − α

6

T∫
s

‖	Zr‖2 dr

)
� cE

[∣∣h(
X

n,t,x
T

) − h
(
X

t,x
T

)∣∣2 +
T∫

t

∣∣	Y t,x
s

∣∣2 +
T∫

t

∣∣Xn,t,x
s − Xt,x

s

∣∣2 ds

]
.

Applying Gronwall’s lemma and Bukholder–Davis–Gundy inequality successively we get

E

(
sup

t�s�T

|	Ys |2 +
T∫

t

‖	Zs‖2 ds

)
� cE

(∣∣h(
X

n,t,x
T

) − h
(
X

t,x
T

)∣∣2 + sup
t�s�T

∣∣Xn,t,x
s − Xt,x

s

∣∣2
)
.

The result is then a consequence of Theorem 1.1 and Lebesgue theorem convergence.
Using similar arguments as before one can show the second assertion. We just take conditional expectation with

respect to Fs in (6), to get

|	Ys |2 � cE
Fs

(∣∣h(
X

n,t,x
T

) − h
(
X

t,x
T

)∣∣2 + sup
0�s�T

∣∣Xn,t,x
s − Xt,x

s

∣∣2
)
.

This completes the proof. �
Remark 1. Notice that in the previous proof we use only conditions (H1) and (H2) on function g. In fact, the condition
(H) is needed to define the stochastic viscosity solution for SPDEs (5) and (1). For more details in the subject we refer
to Boufoussi et al. [2] and Buckdahn and Ma [3].
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