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Abstract

We consider the detection of a jump in a continuous process over a fixed time interval. We aim to locate the jump position via
discrete observations and consider how increasing the frequency of the observations affects the accuracy of the detection process.
We show that the classical cumulative-sum estimator fails, and propose a new estimator based on local information that we prove
converges exponentially fast. To cite this article: G. Wang et al., C. R. Acad. Sci. Paris, Ser. I 346 (2008).
© 2008 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Résumé

Détection de rupture pour des processus continus avec un échantillonnage à haute fréquence. Nous considérons la détection
de saut dans un processus en temps continu sur un intervalle de temps fini et fixé. On cherche à localiser dans le temps la position
de rupture via des observations discrètes. Nous étudions l’effet de croissance de la fréquence d’échantillonnage sur la précision
de l’estimation. Nous montrons que la procédure classique avec les estimateurs à sommes cumulatives échoue et nous proposons
une alternative basée sur une localisation de l’information. Nous prouvons que le nouvel estimateur converge avec une vitesse
exponentielle. Pour citer cet article : G. Wang et al., C. R. Acad. Sci. Paris, Ser. I 346 (2008).
© 2008 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

Sudden localized changes in data occur in a very broad range of applications that span image processing, signal
processing, economics and the physical sciences. Given a finite set of observations, one typically needs to estimate
the location at which changes occur. In this paper, we consider a continuous-time process with both dependent and
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independent increments over a fixed time interval with a single jump at an unknown location. Correlations are inherent
in continuous processes and these correlations cause a number of challenging practical and theoretical difficulties.

The change-point problem has a wide literature that spans a number of fields. There are also a wide range of
techniques including linear-model based approaches and nonparametric approaches. For a comprehensive review of
the subject we refer the reader to Basseville and Nikiforov [1].

For uncorrelated processes or for independent data a number of important results have been obtained. Carlstein [4]
introduced a class of nonparametric estimators based on cumulative sums for problems in which the distribution is
stationary on both sides of the jump. Dumbgen [5] considered a more general class of estimators and proved an
Op(n−1) rate of convergence, where n is the number of observations.

Wang [8] proposed a method based on wavelets that considered a white-noise model in which the mean varies
continuously on both sides of the jump. Wong et al. [9] considered jump detection in a heteroscedastic autoregressive
model and proved the consistency of an estimator that used wavelets.

Nikiforov [6] considered generalized change detection problems for stochastic models. He provided a statistical
method for both detecting and isolating changes in stochastic systems. He also considered the optimality of the ap-
proach in the sense of minimizing the worst mean detection delay. Nikiforov [7] made a detailed comparison between
two strategies for both change detection and isolation. He compared optimal sequential and fixed-size sample strate-
gies and showed that a simple nonsequential method is almost as efficient as an optimal sequential algorithm, but with
less costly computation.

When there are heavy correlations in the noise the problem is significantly more challenging. Ben Hariz et al. [3]
considered data with long-range dependence where correlations decay to zero algebraically or faster. They showed
that the classical cumulative-sum (CUSUM) estimators also achieve the Op(n−1) rate of convergence in this case.

To our best knowledge, previous works have focussed on processes with independent increments, weakly dependent
structure, or at least with correlations structures that tend to zero. They hence do not apply to situations in which there
is a finite interval and the sampling frequency tends to infinity.

There are a number of important applications related to high-frequency sampling in which correlations between
neighboring points do not decay to zero. For this class of problems we show that the traditional cumulative-sum and
wavelet-based estimators may not yield consistent estimation. We propose an alternative estimator that is based on
local averages and show that the estimator performs best when it uses localized information. For Gaussian data we
derive a bound for the probability of the estimator selecting an incorrect change-point location and show that this
probability tends to zero exponentially fast as the sampling rate tends to infinity. Detailed proofs of these results can
be found in Ben Hariz et al. [2].

2. Framework and methodology

We consider the following model

Yt = δ1{t>θ} + Xt, t ∈ [0, T ], (1)

where δ is the size of the jump and θ ∈ (0, T ) is the location of the jump. We assume that (Xt )0�t�T is a ran-
dom process with a constant mean, which, without loss of generality, is taken to be zero. We also assume that the
process (Xt ) satisfies the following regularity condition

∃α > 0,C > 0, such that for s, t ∈ [0, T ], E(Xs − Xt)
2 � C|s − t |α. (2)

This is a typical assumption to ensure the continuity of the process.
Observe that here the main concern is the local fluctuations of X rather than the long-range correlations of X. This

is in sharp contrast with the common assumption that the random part of the data is either a white noise process,
a weakly dependent process or a process with correlations that tend to zero as the distance between points tends to
infinity.

Clearly, the process can only be observed at a finite number of grid points. For the sake of simplicity we consider
the case T = 1 with uniformly distributed grid points at t1 = T/n, . . . , tk = kT /n, . . . , tn = T . Given the observations
(Yti )1�i�n , we aim to estimate within which interval [θ̂ , θ̂ + 1/n[ the change-point lies. Here θ̂ is determined by a
localized version of the cumulative-sum estimator

θ̂ = 1
min

(
arg max

{|Uk|
})

, (3)

n 1�k<n
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with

Uk = 1

k − kl + 1

k∑
i=kl

Yi − 1

ku − k

ku∑
i=k+1

Yi, k = 1, . . . , n − 1, (4)

where kl = max(1, k − L + 1) and ku = min(k + L,n).
The implementation of these estimators is straight-forward, namely for a given continuous process, we sample the

data uniformly at the points ti = i/n, i = 1,2, . . . , n, and consider each interval [ti , ti+1[, i = 1,2, . . . , n − 1, as a
candidate for the segment of the process within which the change-point lies. We take a window with 2L observations
with an obvious modification near the end points of the data set (see Eq. (4)), and determine the difference between
the mean of Y based on the data from the first L points and that from the second L points. The algorithm identifies
the interval which gives the maximum of the absolute value of the difference as the segment where the change point
lies. The classical CUSUM estimator takes the whole set as the window size, i.e., L is equal to n.

3. Main results

We have performed numerical tests of processes with correlation functions that satisfy (2). The simulations show
that the classical CUSUM change-point estimator that one obtains by setting L = n in (4) does not yield consistent
results. The results also show that smaller values of L yield more accurate estimators. This suggests that choosing
L = 1 will be best choice since it gives the smallest estimation error. Therefore, in the rest of this Note, we will only
consider the case of L = 1 and develop some surprising theoretical results for this apparently simple choice of L.

Before progressing to the next section in which we present our main theoretical results, we provide some simple
intuitive explanation about why the conventional approach based on whole data set, that is L = n, fails and why L = 1
is a better choice.

The classical change-point problem corresponds to the situation in which the data is zero correlated. In this case,
choosing larger value of L will reduce the statistical errors in the estimates for the empirical means in (4). If one
considers correlated processes in which the correlations decay to zero a similar argument holds. These processes
correspond to situations in which the frequency is fixed, but the time over which the process is recorded tends to
infinity. For the class of problems considered in this Note, the time over which the process is recorded is fixed, but the
sampling frequency increases. As one increases the frequency the correlations among all sampled data will not tend
to zero. These correlations imply that the statistical errors in (4) do not decay. In this situation, as n tends to infinity,
the data between the neighboring points becomes almost perfectly correlated. This is due to the fact the noise between
neighboring points becomes almost perfectly correlated. Therefore the difference between data from the neighboring
points will be very small except across the change point where the difference will be dominated by the jump. Therefore
L = 1 will be the best choice when we consider high frequency correlated data. As one increases L, the noise of the
data within the window containing the 2L observations becomes less correlated, and consequently the performance
of the estimator deteriorates.

In the following theorem, we state an exponential bound for the probability of missing the change-point location
and give some examples:

Theorem 3.1. Assume that (Xt ) is a Gaussian process. Then we have

P

(
θ /∈

[
θ̂ , θ̂ + 1

n

])
� 2(n − 1)P

(
N(0,1) � δ√

εn

)
, (5)

where εn := maxi �=k(Var(Zi − Zk),Var(Zi + Zk)), Zi := Xi/n − X(i+1)/n and k := [nθ ].
In particular,

(i) If there exist constants α > 0,C > 0, such that for s, t ∈ [0, T ], E(Xs − Xt)
2 � C|s − t |α , then εn � 4Cn−α .

(ii) If E(Xs − Xt)
2 � C|s − t |α and for s1 � s2 � t1 � t2, |E(Xs2 − Xs1)(Xt2 − Xt1)| � C1|s2 − s1|α1 |t2 − t1|α2 for

α1 + α2 > α, then εn � 2Cn−α + o(n−α).

Remark. If X is weak stationary and |corr(Xs,Xt ) − 1| � C|s − t |α , then (i) is satisfied. Condition (ii) is satisfied
when (Xt ) has independent increments.
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In summary, we have considered the detection of change-points for continuous processes over a fixed time interval.
We have shown that as the frequency of observations increases the classical CUSUM estimator fails. We have proposed
an alternative, extremely simple, estimator. For Gaussian processes with natural conditions to control the regularity
of the process, we have derived a bound for the probability of missing the change-point and shown that our estimator
has exponentially fast convergence.

References

[1] M. Basseville, I.V. Nikiforov, Detection of Abrupt Changes: Theory and Application, Prentice-Hall, Englewood Cliffs, NJ, 1993.
[2] S. Ben Hariz, G.M. Wang, J.J. Wylie, Q. Zhang, Jump detection for discretely observed continuous processes, Preprint, 2007.
[3] S. Ben Hariz, J.J. Wylie, Q. Zhang, Optimal rate of convergence for nonparametric change-point estimators for non-stationary sequences, Ann.

Statist. 35 (2007) 1802–1826.
[4] E. Carlstein, Nonparametric change-point estimation, Ann. Statist. 16 (1988) 188–197.
[5] L. Dumbgen, The asymptotic behavior of some nonparametric change-point estimators, Ann. Statist. 19 (1991) 1471–1495.
[6] I.V. Nikiforov, A generalized change detection problem, IEEE Trans. Inform. Theory 41 (1) (1995) 171–187.
[7] I.V. Nikiforov, Two strategies in the problem of change detection and isolation, IEEE Trans. Inform. Theory 43 (2) (1997) 770–776.
[8] Y. Wang, Jump and sharp cusp detection by wavelets, Biometrika 82 (2) (1995) 385–397.
[9] H. Wong, W. Ip, Y. Li, Detection of jumps by wavelets in a heteroscedastic autoregressive model, Statist. Probab. Lett. 52 (4) (2001) 365–372.


