Mathematical Analysis

On some new applications of power increasing sequences

Hüseyin Bor
Department of Mathematics, Erciyes University, 38039 Kayseri, Turkey
Received 17 August 2007; accepted after revision 29 January 2008
Available online 10 March 2008
Presented by Jean-Pierre Kahane

Abstract

In the present Note, a result dealing with $\left|\bar{N}, p_{n}\right|_{k}$ summability has been generalized for $\left|\bar{N}, p_{n}, \theta_{n}\right|_{k}$ summability factors under more weaker conditions. Also some new results have obtained. To cite this article: H. Bor, C. R. Acad. Sci. Paris, Ser. I 346 (2008).

© 2008 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Résumé

Sur quelques nouvelles applications des puissances des suites croissantes. Dans cette Note, nous donnons une généralisation d'un résultat connu de $\left|\bar{N}, p_{n}\right|_{k}$ sommabilité portant sur les facteurs de summabilité $\left|\bar{N}, p_{n}, \theta_{n}\right|_{k}$ sous des hypothèses plus faibles. Nous obtenons des résultats nouveaux. Pour citer cet article : H. Bor, C. R. Acad. Sci. Paris, Ser. I 346 (2008). © 2008 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

We denote by $\mathcal{B} \mathcal{V}_{\mathcal{O}}$ the expression $\mathcal{B} \mathcal{V} \cap \mathcal{C}_{\mathcal{O}}$, where $\mathcal{C}_{\mathcal{O}}$ and $\mathcal{B} \mathcal{V}$ are the set of all null sequences and the set of all sequences with bounded variation, respectively. Let $\sum a_{n}$ be a given infinite series with partial sums $\left(s_{n}\right)$. Let (p_{n}) be a sequence of positive numbers such that $P_{n}=p_{0}+p_{1}+\cdots+p_{n} \rightarrow \infty$ as $n \rightarrow \infty$. The series $\sum a_{n}$ is said to be summable $\left|\bar{N}, p_{n}\right|_{k}, k \geqslant 1$, if (see [1])

$$
\begin{equation*}
\sum_{n=1}^{\infty}\left(P_{n} / p_{n}\right)^{k-1}\left|\sigma_{n}-\sigma_{n-1}\right|^{k}<\infty \tag{1}
\end{equation*}
$$

where

$$
\begin{equation*}
\sigma_{n}=\frac{1}{P_{n}} \sum_{v=0}^{n} p_{v} s_{v} \tag{2}
\end{equation*}
$$

Let $\left(\theta_{n}\right)$ be any sequence of positive real constants. The series $\sum a_{n}$ is said to be summable $\left|\bar{N}, p_{n}, \theta_{n}\right|_{k}, k \geqslant 1$, if (see [6])

[^0]\[

$$
\begin{equation*}
\sum_{n=1}^{\infty} \theta_{n}^{k-1}\left|\sigma_{n}-\sigma_{n-1}\right|^{k}<\infty \tag{3}
\end{equation*}
$$

\]

If we take $\theta_{n}=\frac{P_{n}}{p_{n}}$, then $\left|\bar{N}, p_{n}, \theta_{n}\right|_{k}$ summability reduces to $\left|\bar{N}, p_{n}\right|_{k}$ summability. Also if we take $\theta_{n}=n$ and $p_{n}=1$ for all values of n, then we get $|C, 1|_{k}$ (see [4]) summability.

Furthermore if we take $\theta_{n}=n$, then $\left|\bar{N}, p_{n}, \theta_{n}\right|_{k}$ summability reduces to $\left|R, p_{n}\right|_{k}$ (see [2]) summability.

2. Known result

Mazhar [5] has proved the following theorem dealing with $\left|\bar{N}, p_{n}\right|_{k}$ summability factors by using an almost increasing sequence:

Theorem A. Let $\left(X_{n}\right)$ be an almost increasing sequence and let there be sequences $\left(\lambda_{n}\right)$ and $\left(p_{n}\right)$ such that

$$
\begin{align*}
& \left|\lambda_{m}\right| X_{m}=\mathrm{O}(1) \quad \text { as } m \rightarrow \infty, \tag{4}\\
& \sum_{n=1}^{m} n X_{n}\left|\Delta^{2} \lambda_{n}\right|=\mathrm{O}(1), \tag{5}\\
& \sum_{n=1}^{m} \frac{P_{n}}{n}=\mathrm{O}\left(P_{m}\right) \quad \text { as } m \rightarrow \infty . \tag{6}
\end{align*}
$$

If

$$
\begin{align*}
& \sum_{n=1}^{m} \frac{\left|t_{n}\right|^{k}}{n}=\mathrm{O}\left(X_{m}\right) \quad \text { as } m \rightarrow \infty \tag{7}\\
& \sum_{n=1}^{m} \frac{p_{n}}{P_{n}}\left|t_{n}\right|^{k}=\mathrm{O}\left(X_{m}\right) \quad \text { as } m \rightarrow \infty \tag{8}
\end{align*}
$$

then the series $\sum a_{n} \lambda_{n}$ is summable $\left|\bar{N}, p_{n}\right|_{k}, k \geqslant 1$.

3. The main result

In the present Note, we make use of the concept of a quasi β-power increasing sequence in order to generalize Theorem A for the $\left|\bar{N}, p_{n}, \theta_{n}\right|_{k}$ summability under considerably weaker conditions. Now we shall prove the following theorem:

Theorem. Let $\left(\lambda_{n}\right) \in \mathcal{B} \mathcal{V}_{\mathcal{O}}$ and $\left(X_{n}\right)$ be a quasi β-power increasing sequence for some $0<\beta<1$. If $\left(\frac{\theta_{n} p_{n}}{P_{n}}\right)$ is a non-increasing sequence and the conditions (4)-(7),

$$
\begin{equation*}
\sum_{n=1}^{m} \theta_{n}^{k-1}\left(\frac{p_{n}}{P_{n}}\right)^{k}\left|t_{n}\right|^{k}=\mathrm{O}\left(X_{m}\right) \quad \text { as } m \rightarrow \infty \tag{9}
\end{equation*}
$$

are satisfied, then the series $\sum a_{n} \lambda_{n}$ is summable $\left|\bar{N}, p_{n}, \theta_{n}\right|_{k}, k \geqslant 1$.
It should be noted that if we take $\left(X_{n}\right)$ as an almost increasing sequence and $\theta_{n}=\frac{P_{n}}{p_{n}}$, then we obtain Theorem A. In this case condition (9) reduces to condition (8), the condition ($\frac{\theta_{n} p_{n}}{P_{n}}$) which is a non-increasing sequence automatically satisfied and the condition $\left(\lambda_{n}\right) \in \mathcal{B} \mathcal{V}_{\mathcal{O}}$ is not needed.

We need following lemma for the proof of our theorem:
Lemma. (See [3].) Under the conditions of the theorem, we have that

$$
\begin{align*}
& n X_{n}\left|\Delta \lambda_{n}\right|=\mathrm{O}(1) \quad \text { as } n \rightarrow \infty \tag{10}\\
& \sum_{n=1}^{\infty} X_{n}\left|\Delta \lambda_{n}\right|<\infty \tag{11}
\end{align*}
$$

4. Proof of the theorem

Let $\left(T_{n}\right)$ denotes the $\left(\bar{N}, p_{n}\right)$ mean of the series $\sum a_{n} \lambda_{n}$. Then, for $n \geqslant 1$, we have

$$
T_{n}-T_{n-1}=\frac{p_{n}}{P_{n} P_{n-1}} \sum_{v=1}^{n} P_{v-1} a_{v} \lambda_{v}=\frac{p_{n}}{P_{n} P_{n-1}} \sum_{v=1}^{n} \frac{P_{v-1} \lambda_{v}}{v} v a_{v}
$$

By Abel's transformation, we have

$$
\begin{aligned}
T_{n}-T_{n-1}= & \frac{n+1}{n P_{n}} p_{n} t_{n} \lambda_{n}-\frac{p_{n}}{P_{n} P_{n-1}} \sum_{v=1}^{n-1} p_{v} t_{v} \lambda_{v} \frac{v+1}{v}+\frac{p_{n}}{P_{n} P_{n-1}} \sum_{v=1}^{n-1} P_{v} \Delta \lambda_{v} t_{v} \frac{v+1}{v} \\
& +\frac{p_{n}}{P_{n} P_{n-1}} \sum_{v=1}^{n-1} P_{v} t_{v} \lambda_{v+1} \frac{1}{v}=T_{n, 1}+T_{n, 2}+T_{n, 3}+T_{n, 4}, \quad \text { say. }
\end{aligned}
$$

To complete the proof of the theorem, by Minkowski's inequality, it is enough to show that

$$
\sum_{n=1}^{\infty} \theta_{n}^{k-1}\left|T_{n, r}\right|^{k}<\infty, \quad \text { for } r=1,2,3,4
$$

Firstly, applying Abel's transformation we have that

$$
\sum_{n=1}^{m} \theta_{n}^{k-1}\left|T_{n, 1}\right|^{k}=\mathrm{O}(1) \sum_{n=1}^{m}\left|\lambda_{n}\right| \theta_{n}^{k-1}\left(\frac{p_{n}}{P_{n}}\right)^{k}\left|t_{n}\right|^{k}=\mathrm{O}(1) \sum_{n=1}^{m-1}\left|\Delta \lambda_{n}\right| X_{n}+\mathrm{O}(1)\left|\lambda_{m}\right| X_{m}=\mathrm{O}(1) \quad \text { as } m \rightarrow \infty
$$

by virtue of the hypotheses of the theorem and lemma. Now, when $k>1$ applying Hölder's inequality, as in $T_{n, 1}$, we have that

$$
\begin{aligned}
\sum_{n=2}^{m+1} \theta_{n}^{k-1}\left|T_{n, 2}\right|^{k} & =\mathrm{O}(1) \sum_{v=1}^{m} p_{v}\left|\lambda_{v}\right|^{k-1}\left|\lambda_{v}\right|\left|t_{v}\right|^{k} \sum_{n=v+1}^{m+1}\left(\frac{\theta_{n} p_{n}}{P_{n}}\right)^{k-1} \frac{p_{n}}{P_{n} P_{n-1}} \\
& =\mathrm{O}(1) \sum_{v=1}^{m}\left(\frac{\theta_{v} p_{v}}{P_{v}}\right)^{k-1} p_{v}\left|t_{v}\right|^{k}\left|\lambda_{v}\right| \sum_{n=v+1}^{m+1} \frac{p_{n}}{P_{n} P_{n-1}} \\
& =\mathrm{O}(1) \sum_{v=1}^{m}\left|\lambda_{v}\right| \theta_{v}^{k-1}\left(\frac{p_{v}}{P_{v}}\right)^{k}\left|t_{v}\right|^{k}=\mathrm{O}(1) \quad \text { as } m \rightarrow \infty .
\end{aligned}
$$

Again in the similar way, we have that

$$
\begin{aligned}
\sum_{n=2}^{m+1} \theta_{n}^{k-1}\left|T_{n, 3}\right|^{k} & =\mathrm{O}(1) \sum_{v=1}^{m} P_{v}\left|t_{v}\right|^{k}\left|\Delta \lambda_{v}\right| \sum_{n=v+1}^{m+1}\left(\frac{\theta_{n} p_{n}}{p_{n}}\right)^{k-1} \frac{p_{n}}{P_{n} P_{n-1}} \\
& =\mathrm{O}(1) \sum_{v=1}^{m}\left(\frac{\theta_{v} p_{v}}{P_{v}}\right)^{k-1}\left|\Delta \lambda_{v}\right|\left|t_{v}\right|^{k}=\mathrm{O}(1)\left(\frac{\theta_{1} p_{1}}{P_{1}}\right)^{k-1} \sum_{v=1}^{m} v\left|\Delta \lambda_{v}\right| \frac{1}{v}\left|t_{v}\right|^{k} \\
& =\mathrm{O}(1) \sum_{v=1}^{m-1} v\left|\Delta^{2} \lambda_{v}\right| X_{v}+\mathrm{O}(1) \sum_{v=1}^{m-1}\left|\Delta \lambda_{v}\right| X_{v}+\mathrm{O}(1) m\left|\Delta \lambda_{m}\right| X_{m}=\mathrm{O}(1) \quad \text { as } m \rightarrow \infty
\end{aligned}
$$

by virtue of the hypotheses of the theorem and lemma. Finally, as in $T_{n, 1}$ we have that

$$
\begin{aligned}
\sum_{n=2}^{m+1} \theta_{n}^{k-1}\left|T_{n, 4}\right|^{k} & =\mathrm{O}(1) \sum_{v=1}^{m} P_{v}\left|\lambda_{v+1}\right|\left|t_{v}\right|^{k} \frac{1}{v} \sum_{n=v+1}^{m+1}\left(\frac{\theta_{n} p_{n}}{P_{n}}\right)^{k-1} \frac{p_{n}}{P_{n} P_{n-1}} \\
& =\mathrm{O}(1) \sum_{v=1}^{m}\left|\lambda_{v+1}\right|\left(\frac{\theta_{v} p_{v}}{P_{v}}\right)^{k-1} \frac{\left|t_{v}\right|^{k}}{v}=\mathrm{O}(1)\left(\frac{\theta_{1} p_{1}}{P_{1}}\right)^{k-1} \sum_{v=1}^{m}\left|\lambda_{v+1}\right| \frac{\left|t_{v}\right|^{k}}{v} \\
& =\mathrm{O}(1) \sum_{v=1}^{m-1}\left|\Delta \lambda_{v+1}\right| X_{v+1}+\mathrm{O}(1)\left|\lambda_{m+1}\right| X_{m+1}=\mathrm{O}(1) \quad \text { as } m \rightarrow \infty,
\end{aligned}
$$

in view of the hypotheses of the theorem and lemma. This completes the proof of the theorem. If we take $p_{n}=1$ for all values of n and $\theta_{n}=n$, then we get a result dealing with $|C, 1|_{k}$ summability factors. Also if we take $p_{n}=1$ for all values of n, then we have a new result for $\left|C, 1, \theta_{n}\right|_{k}$ summability. Finally if we take $\theta_{n}=n$, then we have an another new result for $\left|R, p_{n}\right|_{k}$ summability.

References

[1] H. Bor, On two summability methods, Math. Proc. Cambridge Philos. Soc. 97 (1985) 147-149.
[2] H. Bor, On the relative strength of two absolute summability methods, Proc. Amer. Math. Soc. 113 (1991) 1009-1012.
[3] H. Bor, A study on weighted mean summability, Rend. Circ. Mat. Palermo (2) 56 (2007) 198-206.
[4] T.M. Flett, On an extension of absolute summability and some theorems of Littlewood and Paley, Proc. London Math. Soc. 7 (1957) $113-141$.
[5] S.M. Mazhar, Absolute summability factors of infinite series, Kyungpook Math. J. 39 (1999) 67-73.
[6] W.T. Sulaiman, On some summability factors of infinite series, Proc. Amer. Math. Soc. 115 (1992) 313-317.

[^0]: E-mail address: bor@erciyes.edu.tr.

