

Available online at www.sciencedirect.com

COMPTES RENDUS MATHEMATIQUE

C. R. Acad. Sci. Paris, Ser. I 346 (2008) 391-394

http://france.elsevier.com/direct/CRASS1/

Mathematical Analysis

On some new applications of power increasing sequences

Hüseyin Bor

Department of Mathematics, Erciyes University, 38039 Kayseri, Turkey Received 17 August 2007; accepted after revision 29 January 2008 Available online 10 March 2008 Presented by Jean-Pierre Kahane

Abstract

In the present Note, a result dealing with $|\bar{N}, p_n|_k$ summability has been generalized for $|\bar{N}, p_n, \theta_n|_k$ summability factors under more weaker conditions. Also some new results have obtained. To cite this article: H. Bor, C. R. Acad. Sci. Paris, Ser. I 346 (2008).

© 2008 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Résumé

Sur quelques nouvelles applications des puissances des suites croissantes. Dans cette Note, nous donnons une généralisation d'un résultat connu de $|\bar{N}, p_n|_k$ sommabilité portant sur les facteurs de summabilité $|\bar{N}, p_n, \theta_n|_k$ sous des hypothèses plus faibles. Nous obtenons des résultats nouveaux. *Pour citer cet article : H. Bor, C. R. Acad. Sci. Paris, Ser. I 346 (2008).* © 2008 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

We denote by $\mathcal{BV}_{\mathcal{O}}$ the expression $\mathcal{BV} \cap \mathcal{C}_{\mathcal{O}}$, where $\mathcal{C}_{\mathcal{O}}$ and \mathcal{BV} are the set of all null sequences and the set of all sequences with bounded variation, respectively. Let $\sum a_n$ be a given infinite series with partial sums (s_n) . Let (p_n) be a sequence of positive numbers such that $P_n = p_0 + p_1 + \cdots + p_n \to \infty$ as $n \to \infty$. The series $\sum a_n$ is said to be summable $|\bar{N}, p_n|_k, k \ge 1$, if (see [1])

$$\sum_{n=1}^{\infty} (P_n/p_n)^{k-1} |\sigma_n - \sigma_{n-1}|^k < \infty,$$
(1)

where

$$\sigma_n = \frac{1}{P_n} \sum_{\nu=0}^n p_\nu s_\nu.$$
⁽²⁾

Let (θ_n) be any sequence of positive real constants. The series $\sum a_n$ is said to be summable $|\bar{N}, p_n, \theta_n|_k, k \ge 1$, if (see [6])

E-mail address: bor@erciyes.edu.tr.

¹⁶³¹⁻⁰⁷³X/\$ – see front matter © 2008 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved. doi:10.1016/j.crma.2008.02.013

$$\sum_{n=1}^{\infty} \theta_n^{k-1} |\sigma_n - \sigma_{n-1}|^k < \infty.$$
(3)

If we take $\theta_n = \frac{p_n}{p_n}$, then $|\bar{N}, p_n, \theta_n|_k$ summability reduces to $|\bar{N}, p_n|_k$ summability. Also if we take $\theta_n = n$ and $p_n = 1$ for all values of n, then we get $|C, 1|_k$ (see [4]) summability.

Furthermore if we take $\theta_n = n$, then $|\bar{N}, p_n, \theta_n|_k$ summability reduces to $|R, p_n|_k$ (see [2]) summability.

2. Known result

Mazhar [5] has proved the following theorem dealing with $|\bar{N}, p_n|_k$ summability factors by using an almost increasing sequence:

Theorem A. Let (X_n) be an almost increasing sequence and let there be sequences (λ_n) and (p_n) such that

$$|\lambda_m|X_m = \mathcal{O}(1) \quad as \ m \to \infty, \tag{4}$$

$$\sum_{n=1}^{m} nX_n |\Delta^2 \lambda_n| = \mathcal{O}(1), \tag{5}$$

$$\sum_{n=1}^{m} \frac{P_n}{n} = \mathcal{O}(P_m) \quad as \ m \to \infty.$$
(6)

If

$$\sum_{n=1}^{m} \frac{|t_n|^k}{n} = \mathcal{O}(X_m) \quad as \ m \to \infty,$$

$$\sum_{m=1}^{m} \frac{p_n}{n} = \mathcal{O}(X_m) \quad as \ m \to \infty,$$
(7)

$$\sum_{n=1}^{\infty} \frac{P_n}{P_n} |t_n|^k = \mathcal{O}(X_m) \quad as \ m \to \infty,$$
(8)

then the series $\sum a_n \lambda_n$ is summable $|\bar{N}, p_n|_k, k \ge 1$.

3. The main result

In the present Note, we make use of the concept of a quasi β -power increasing sequence in order to generalize Theorem A for the $|\bar{N}, p_n, \theta_n|_k$ summability under considerably weaker conditions. Now we shall prove the following theorem:

Theorem. Let $(\lambda_n) \in \mathcal{BV}_{\mathcal{O}}$ and (X_n) be a quasi β -power increasing sequence for some $0 < \beta < 1$. If $(\frac{\theta_n p_n}{P_n})$ is a non-increasing sequence and the conditions (4)–(7),

$$\sum_{n=1}^{m} \theta_n^{k-1} \left(\frac{p_n}{P_n}\right)^k |t_n|^k = \mathcal{O}(X_m) \quad as \ m \to \infty,$$
(9)

are satisfied, then the series $\sum a_n \lambda_n$ is summable $|\bar{N}, p_n, \theta_n|_k, k \ge 1$.

It should be noted that if we take (X_n) as an almost increasing sequence and $\theta_n = \frac{P_n}{p_n}$, then we obtain Theorem A. In this case condition (9) reduces to condition (8), the condition $(\frac{\theta_n p_n}{P_n})$ which is a non-increasing sequence automatically satisfied and the condition $(\lambda_n) \in \mathcal{BV}_{\mathcal{O}}$ is not needed.

We need following lemma for the proof of our theorem:

Lemma. (See [3].) Under the conditions of the theorem, we have that

392

$$nX_n |\Delta\lambda_n| = O(1) \quad as \ n \to \infty, \tag{10}$$

$$\sum_{n=1}^{\infty} X_n |\Delta\lambda_n| < \infty. \tag{11}$$

4. Proof of the theorem

Let (T_n) denotes the (\overline{N}, p_n) mean of the series $\sum a_n \lambda_n$. Then, for $n \ge 1$, we have

$$T_n - T_{n-1} = \frac{p_n}{P_n P_{n-1}} \sum_{v=1}^n P_{v-1} a_v \lambda_v = \frac{p_n}{P_n P_{n-1}} \sum_{v=1}^n \frac{P_{v-1} \lambda_v}{v} v a_v.$$

By Abel's transformation, we have

$$T_n - T_{n-1} = \frac{n+1}{nP_n} p_n t_n \lambda_n - \frac{p_n}{P_n P_{n-1}} \sum_{v=1}^{n-1} p_v t_v \lambda_v \frac{v+1}{v} + \frac{p_n}{P_n P_{n-1}} \sum_{v=1}^{n-1} P_v \Delta \lambda_v t_v \frac{v+1}{v} + \frac{p_n}{P_n P_{n-1}} \sum_{v=1}^{n-1} P_v t_v \lambda_{v+1} \frac{1}{v} = T_{n,1} + T_{n,2} + T_{n,3} + T_{n,4}, \quad \text{say.}$$

To complete the proof of the theorem, by Minkowski's inequality, it is enough to show that

$$\sum_{n=1}^{\infty} \theta_n^{k-1} |T_{n,r}|^k < \infty, \quad \text{for } r = 1, 2, 3, 4.$$

Firstly, applying Abel's transformation we have that

$$\sum_{n=1}^{m} \theta_n^{k-1} |T_{n,1}|^k = \mathcal{O}(1) \sum_{n=1}^{m} |\lambda_n| \theta_n^{k-1} \left(\frac{p_n}{P_n}\right)^k |t_n|^k = \mathcal{O}(1) \sum_{n=1}^{m-1} |\Delta \lambda_n| X_n + \mathcal{O}(1) |\lambda_m| X_m = \mathcal{O}(1) \quad \text{as } m \to \infty,$$

by virtue of the hypotheses of the theorem and lemma. Now, when k > 1 applying Hölder's inequality, as in $T_{n,1}$, we have that

$$\sum_{n=2}^{m+1} \theta_n^{k-1} |T_{n,2}|^k = O(1) \sum_{\nu=1}^m p_\nu |\lambda_\nu|^{k-1} |\lambda_\nu| |t_\nu|^k \sum_{n=\nu+1}^{m+1} \left(\frac{\theta_n p_n}{P_n}\right)^{k-1} \frac{p_n}{P_n P_{n-1}}$$
$$= O(1) \sum_{\nu=1}^m \left(\frac{\theta_\nu p_\nu}{P_\nu}\right)^{k-1} p_\nu |t_\nu|^k |\lambda_\nu| \sum_{n=\nu+1}^{m+1} \frac{p_n}{P_n P_{n-1}}$$
$$= O(1) \sum_{\nu=1}^m |\lambda_\nu| \theta_\nu^{k-1} \left(\frac{p_\nu}{P_\nu}\right)^k |t_\nu|^k = O(1) \quad \text{as } m \to \infty.$$

Again in the similar way, we have that

$$\begin{split} \sum_{n=2}^{m+1} \theta_n^{k-1} |T_{n,3}|^k &= O(1) \sum_{v=1}^m P_v |t_v|^k |\Delta\lambda_v| \sum_{n=v+1}^{m+1} \left(\frac{\theta_n p_n}{p_n}\right)^{k-1} \frac{p_n}{P_n P_{n-1}} \\ &= O(1) \sum_{v=1}^m \left(\frac{\theta_v p_v}{P_v}\right)^{k-1} |\Delta\lambda_v| |t_v|^k = O(1) \left(\frac{\theta_1 p_1}{P_1}\right)^{k-1} \sum_{v=1}^m v |\Delta\lambda_v| \frac{1}{v} |t_v|^k \\ &= O(1) \sum_{v=1}^{m-1} v |\Delta^2\lambda_v| X_v + O(1) \sum_{v=1}^{m-1} |\Delta\lambda_v| X_v + O(1)m |\Delta\lambda_m| X_m = O(1) \quad \text{as } m \to \infty, \end{split}$$

by virtue of the hypotheses of the theorem and lemma. Finally, as in $T_{n,1}$ we have that

$$\begin{split} \sum_{n=2}^{m+1} \theta_n^{k-1} |T_{n,4}|^k &= \mathcal{O}(1) \sum_{v=1}^m P_v |\lambda_{v+1}| |t_v|^k \frac{1}{v} \sum_{n=v+1}^{m+1} \left(\frac{\theta_n p_n}{P_n}\right)^{k-1} \frac{p_n}{P_n P_{n-1}} \\ &= \mathcal{O}(1) \sum_{v=1}^m |\lambda_{v+1}| \left(\frac{\theta_v p_v}{P_v}\right)^{k-1} \frac{|t_v|^k}{v} = \mathcal{O}(1) \left(\frac{\theta_1 p_1}{P_1}\right)^{k-1} \sum_{v=1}^m |\lambda_{v+1}| \frac{|t_v|^k}{v} \\ &= \mathcal{O}(1) \sum_{v=1}^{m-1} |\Delta \lambda_{v+1}| X_{v+1} + \mathcal{O}(1) |\lambda_{m+1}| X_{m+1} = \mathcal{O}(1) \quad \text{as } m \to \infty, \end{split}$$

in view of the hypotheses of the theorem and lemma. This completes the proof of the theorem. If we take $p_n = 1$ for all values of n and $\theta_n = n$, then we get a result dealing with $|C, 1|_k$ summability factors. Also if we take $p_n = 1$ for all values of n, then we have a new result for $|C, 1, \theta_n|_k$ summability. Finally if we take $\theta_n = n$, then we have an another new result for $|R, p_n|_k$ summability.

References

- [1] H. Bor, On two summability methods, Math. Proc. Cambridge Philos. Soc. 97 (1985) 147-149.
- [2] H. Bor, On the relative strength of two absolute summability methods, Proc. Amer. Math. Soc. 113 (1991) 1009–1012.
- [3] H. Bor, A study on weighted mean summability, Rend. Circ. Mat. Palermo (2) 56 (2007) 198-206.
- [4] T.M. Flett, On an extension of absolute summability and some theorems of Littlewood and Paley, Proc. London Math. Soc. 7 (1957) 113-141.
- [5] S.M. Mazhar, Absolute summability factors of infinite series, Kyungpook Math. J. 39 (1999) 67–73.
- [6] W.T. Sulaiman, On some summability factors of infinite series, Proc. Amer. Math. Soc. 115 (1992) 313-317.