Atiyah-Drinfeld-Hitchin-Manin construction of framed instanton sheaves

Marcos Jardim ${ }^{1}$
IMECC-UNICAMP, Caixa Postal 6065, 13083-859 Campinas-SP, Brazil
Received 5 December 2006; accepted after revision 29 January 2008
Available online 21 March 2008
Presented by Christophe Soule

Abstract

We introduce a generalization of Atiyah-Drinfeld-Hitchin-Manin equation, which is subsequently used to construct a class of sheaves on projective spaces that arise in connection with instanton theory. To cite this article: M. Jardim, C. R. Acad. Sci. Paris, Ser. I 346 (2008). © 2008 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Résumé

Construction de Atiyah-Drinfeld-Hitchin-Manin de faisceaux trivialisés d'instantons. Nous introduisons une généralisation de l'equation de Atiyah-Drinfeld-Hitchin-Manin que nous utilisons ensuite pour construire une classe de faisceaux sur des espaces projectifs que l'on rencontre dans le contexte de la théorie des instantons. Pour citer cet article: M. Jardim, C. R. Acad. Sci. Paris, Ser. I 346 (2008).
© 2008 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

A surprising connection between theoretical physics and algebraic geometry appeared in the late 1970s, when Atiyah, Drinfeld, Hitchin and Manin provided a complete classification of instantons on the 4-dimensional sphere S^{4} using the Penrose-Ward correspondence between instantons on S^{4} and certain holomorphic vector bundles on \mathbb{P}^{3} together with a characterization of vector bundles on \mathbb{P}^{3} due to Horrocks [2]. Later, Donaldson noticed in [4] that instantons on S^{4} were also in correspondence with framed holomorphic bundles on \mathbb{P}^{2}, while Mamone Capria and Salamon [8] generalized the Penrose-Ward correspondence to a correspondence between quaternionic instantons on $\mathbb{H}^{1} \mathbb{P}^{k}$ and certain holomorphic vector bundles on $\mathbb{P}^{2 k+1}$. Motivated by these works, Okonek and Spindler introduced the notion of mathematical instanton bundle on $\mathbb{P}^{2 k+1}[10]$; this is a simple, locally-free sheaf E of rank $2 k$ on $\mathbb{P}^{2 k+1}$ with total Chern class given by $c_{t}(E)=\left(1-t^{2}\right)^{-c}$ for some $c \in \mathbb{Z}_{+}$, and natural cohomology in the range $-2 k-1 \leqslant p \leqslant 0$. Since then, such objects have been studied by many authors, see for instance $[1,3]$ and the references therein; the main

[^0]questions are whether such bundles are always stable, and the study of its moduli space. More recently, the author has proposed in [7] the following definition:

Definition 1.1. An instanton sheaf on $\mathbb{P}^{n}(n \geqslant 2)$ is a torsion-free coherent sheaf E on \mathbb{P}^{n} with $c_{1}(E)=0$ satisfying the following cohomological conditions:
(i) for $n \geqslant 2, H^{0}(E(-1))=H^{n}(E(-n))=0$;
(ii) for $n \geqslant 3, H^{1}(E(-2))=H^{n-1}(E(1-n))=0$;
(iii) for $n \geqslant 4, H^{p}(E(k))=0,2 \leqslant p \leqslant n-2$ and $\forall k$.

The integer $c=h^{1}(E(-1))=-\chi(E(-1))$ is called the charge of E.
Recall that a torsion-free sheaf E on \mathbb{P}^{n} is said to be of trivial splitting type if there is a line $\ell \subset \mathbb{P}^{n}$ such that the restriction $\left.E\right|_{\ell}$ is the free sheaf, i.e. $\left.E\right|_{\ell} \simeq \mathcal{O}_{\ell}^{\oplus \mathrm{rkE}}$. A framing on E is the choice of an isomorphism $\phi:\left.E\right|_{\ell} \rightarrow \mathcal{O}_{\ell}^{\oplus \mathrm{rkE}}$. A framed sheaf is pair (E, ϕ) consisting of a torsion-free sheaf E of trivial splitting type and a framing ϕ.

With these definitions in mind, a mathematical instanton bundle on $\mathbb{P}^{2 k+1}$ in the sense of [10] is a rank $2 k$ locallyfree instanton sheaf on $\mathbb{P}^{2 k+1}$ of trivial splitting type (they do not consider framings). Therefore, our definition generalizes [10] by considering more general sheaves of arbitrary rank on projective spaces of arbitrary dimension. Many properties and some explicit examples of instanton sheaves were considered in [7]. The goal of this Note is to present a construction of all framed instanton sheaves on \mathbb{P}^{n} which generalizes the ADHM construction of framed torsion-free sheaves on \mathbb{P}^{2} in [4,9] and the construction of framed instanton sheaves on \mathbb{P}^{3} recently provided in [6]. In this way, we also create a tool to study their moduli spaces, and to address the question of stability.

2. \boldsymbol{d}-dimensional ADHM data

Let V and W be complex vector spaces, with dimensions c and r, respectively, and consider maps $B_{1}, B_{2} \in$ $\operatorname{End}(V), i \in \operatorname{Hom}(W, V)$ and $j \in \operatorname{Hom}(V, W)$. Recall that this so-called $A D H M$ datum $\left(B_{1}, B_{2}, i, j\right)$ is said to be stable if there is no proper subspace $S \subset V$ such that $B_{k}(S) \subset S(k=1,2)$ and $i(W) \subset S$, and that it is said to be costable if there is no proper subspace $S \subset V$ such that $B_{k}(S) \subset S(k=1,2)$ and $S \subset \operatorname{ker} j$. Finally, $\left(B_{1}, B_{2}, i, j\right)$ is regular if it is both stable and costable.

Now take $d \geqslant 0$, and consider the following data ($k=0, \ldots, d$ and $l=1,2$):

$$
\begin{aligned}
& B_{k l} \in \operatorname{Hom}(V, V), \\
& i_{k} \in \operatorname{Hom}(W, V), \quad j_{k} \in \operatorname{Hom}(V, W),
\end{aligned}
$$

and define:

$$
\begin{equation*}
\tilde{B}_{1}=B_{10} z_{0}+\cdots+B_{1 d} z_{d} \quad \text { and } \quad \tilde{B}_{2}=B_{20} z_{0}+\cdots+B_{2 d} z_{d} \tag{1}
\end{equation*}
$$

Thinking of $\left[z_{0}: \cdots: z_{d}\right]$ as homogeneous coordinates of a projective space $\mathbb{P}^{d}, \tilde{B}_{1}$ and \tilde{B}_{2} can be considered as sections of $\operatorname{Hom}(V, V) \otimes \mathcal{O}_{\mathbb{P}^{d}}(1)$. Define also,

$$
\begin{equation*}
\tilde{\imath}=i_{0} z_{0}+\cdots+i_{d} z_{d} \quad \text { and } \quad \tilde{j}=j_{0} z_{0}+\cdots+j_{d} z_{d} \tag{2}
\end{equation*}
$$

Similarly, \tilde{l} and \tilde{j} can be regarded as sections of $\operatorname{Hom}(W, V) \otimes \mathcal{O}_{\mathbb{P}^{d}}(1)$ and $\operatorname{Hom}(V, W) \otimes \mathcal{O}_{\mathbb{P}^{d}}(1)$, respectively. By the notation $\tilde{B}_{1}(p), \tilde{B}_{2}(p), \tilde{\imath}(p)$ and $\tilde{J}(p)$ we mean the evaluation of the sections $\tilde{B}_{1}, \tilde{B}_{2}, \tilde{\imath}$ and \tilde{j} at a point $p \in \mathbb{P}^{d}$.

Definition 2.1. A d-dimensional ADHM datum ($B_{k l}, i_{k}, j_{k}$) is said to be:
(i) semistable if there is $p \in \mathbb{P}^{d}$ such that $\left(\tilde{B}_{1}(p), \tilde{B}_{2}(p), \tilde{\imath}(p), \tilde{J}(p)\right)$ is stable;
(ii) stable if $\left(\tilde{B}_{1}(p), \tilde{B}_{2}(p), \tilde{\imath}(p), \tilde{j}(p)\right)$ is stable for all $p \in \mathbb{P}^{d}$;
(iii) semiregular if it is stable and there is $p \in \mathbb{P}^{d}$ such that $\left(\tilde{B}_{1}(p), \tilde{B}_{2}(p), \tilde{\imath}(p), \tilde{J}(p)\right)$ is regular;
(iv) regular if $\left(\tilde{B}_{1}(p), \tilde{B}_{2}(p), \tilde{\imath}(p), \tilde{J}(p)\right)$ is regular for all $p \in \mathbb{P}^{d}$.

In this Note, we consider the following generalization of the ADHM equation:

$$
\begin{equation*}
\left[\tilde{B}_{1}, \tilde{B}_{2}\right]+\tilde{\imath} \tilde{J}=0 . \tag{3}
\end{equation*}
$$

For $d=0$, (1) and (2) reduce to the usual ADHM data and (3) reduces to the usual ADHM equation. In general, (3) can be broken down to $\binom{d+2}{2}$ equations involving the homomorphisms $B_{k l}, i_{k}$ and j_{k} :

$$
\begin{aligned}
& {\left[B_{k 1}, B_{k 2}\right]+i_{k} j_{k}=0, \quad k=0, \ldots, d,} \\
& {\left[B_{k 1}, B_{m 2}\right]+\left[B_{k 2}, B_{m 1}\right]+i_{k} j_{m}+i_{m} j_{k}=0, \quad k<m=0, \ldots, d .}
\end{aligned}
$$

The case $d=1$ was considered in [4,6] in the context of Yang-Mills theory and the Penrose correspondence; its regular solutions are in 1-1 correspondence with complex instantons on the compactified, complexified Minkowski space-time.

The following existence result can be obtained from our main result (Theorem 3.1 below) and the Main Theorem of [5]:

Proposition 2.2. Semistable solutions of (3) exist for all $d \geqslant 0, r \geqslant 1$ and $c \geqslant 1$. Stable and semiregular solutions of (3) exist provided $r \geqslant d+1$. Regular solutions exist provided $r \geqslant d+1$ for d odd and $r \geqslant d+2$ for d even.

3. Construction of framed instantons sheaves

Let $\left[z_{0}: \cdots: z_{d}: x: y\right]$ denote homogeneous coordinates on \mathbb{P}^{d+2}, and set $\ell_{\infty}=\left\{z_{0}=\cdots=z_{d}=0\right\}$, called the line at infinity. Our main result is the following:

Theorem 3.1. There is a 1-1 correspondence between stable solutions of the d-dimensional ADHM equation (3), and rank r torsion-free instanton sheaves of charge c on \mathbb{P}^{d+2} which are framed at ℓ_{∞}, where $r=\operatorname{dim} W$ and $c=\operatorname{dim} V$. Furthermore, E is reflexive iff the corresponding $A D H M$ datum is semiregular, while E is locally-free iff the corresponding ADHM datum is regular.

In this section, we describe one way of this correspondence, from stable d-dimensional ADHM data to framed instanton sheaves. The reverse direction follows from the Beilinson spectral sequence [7, Theorem 3] together with a generalization of the argument in [9, Section 2.1]. Let ($B_{k l}, i_{k}, j_{k}$) be a solution of (3); set $n=d+2$ and $\tilde{W}=V \oplus V \oplus W$. Consider the complex of sheaves:

$$
\begin{equation*}
V \otimes \mathcal{O}_{\mathbb{P}^{n}}(-1) \xrightarrow{\alpha} \tilde{W} \otimes \mathcal{O}_{\mathbb{P}^{n}} \xrightarrow{\beta} V \otimes \mathcal{O}_{\mathbb{P}^{n}(1),} \tag{4}
\end{equation*}
$$

where the maps α and β are given by ($\mathbf{1}$ denotes the identity endomorphism of V):

$$
\begin{align*}
& \alpha=\left(\begin{array}{c}
\tilde{B}_{1}+x \mathbf{1} \\
\tilde{B}_{2}+y \mathbf{1} \\
\tilde{J}
\end{array}\right), \tag{5}\\
& \beta=\left(\begin{array}{lll}
-\tilde{B}_{2}-y \mathbf{1} & \tilde{B}_{1}+x \mathbf{1} & \tilde{l}
\end{array}\right) . \tag{6}
\end{align*}
$$

A straightforward calculation shows that $\beta \alpha=0$ if and only if ($B_{k l}, i_{k}, j_{k}$) satisfies (3).
Proposition 3.2. Given any d-dimensional ADHM datum ($B_{k l}, i_{k}, j_{k}$), the sheaf map α is injective, and the variety $\Sigma=\left\{X \in \mathbb{P}^{n} \mid \alpha_{X}\right.$ is not injective $\}$ has codimension at least 2 . The sheaf map β is surjective if and only if ($B_{k l}, i_{k}, j_{k}$) is stable.

Proof. It easy to see that α_{X} is injective for all $X \in \ell_{\infty}$. This means that the localized map α_{X} may fail to be injective only at a subvariety $\Sigma \subset \mathbb{P}^{n}$ that does not intersect ℓ_{∞}, therefore Σ must be of codimension at least 2 and sheaf map α is injective.

Similarly, it is easy to see that β_{X} is surjective for all $X \in \ell_{\infty}$. We argue that ($B_{k l}, i_{k}, j_{k}$) is stable if and only if the dual map β_{X}^{*} is injective for all $X=\left[z_{0}: \cdots: z_{d}: x: y\right] \in \mathbb{P}^{n} \backslash \ell_{\infty} ;$ notice that $\left[z_{0}: \cdots: z_{d}\right]$ defines a point $p \in \mathbb{P}^{d}$. Indeed, if β_{X}^{*} is not injective for some $X=\left[z_{0}: \cdots: z_{d}: x: y\right]$, then there is $v \in V$ such that

$$
\begin{equation*}
\tilde{B}_{1}(p)^{*} v=\bar{x} v, \quad \tilde{B}_{2}(p)^{*} v=-\bar{y} v, \quad \text { and } \quad \tilde{\imath}(p)^{*} v=0, \tag{7}
\end{equation*}
$$

where $p=\left[z_{0}: \cdots: z_{d}\right] \in \mathbb{P}^{d}$. By duality, this implies that $\left(\tilde{B}_{1}(p), \tilde{B}_{2}(p), \tilde{\imath}(p), \tilde{j}(p)\right)$ is not stable, thus $\left(B_{k l}, i_{k}, j_{k}\right)$ is not stable.

The converse statement is now clear: if ($B_{k l}, i_{k}, j_{k}$) is not stable, then by duality β_{X}^{*} is not injective for some $X=\left[z_{0}: \cdots: z_{d}: x: y\right]$, hence β cannot be surjective as a sheaf map.

It follows from Proposition 3.2 that if ($B_{k l}, i_{k}, j_{k}$) is stable, then the complex (4) is actually a linear monad. As it is well known, (see for instance [7, Section 1]), the cohomology $E=\operatorname{ker} \beta / \mathrm{im} \alpha$ of the linear monad (4) is a rank r torsion-free instanton sheaf on \mathbb{P}^{n}, of charge c; it is easy to see that $\left.E\right|_{\ell_{\infty}} \xrightarrow{\sim} W \otimes \mathcal{O}_{\ell_{\infty}}$, so that E is framed at ℓ_{∞}.

If ($B_{k l}, i_{k}, j_{k}$) is not stable, the complex (4) becomes a framed perverse sheaf, i.e. an object E^{\bullet} of the derived category $D^{\mathrm{b}}\left(\mathbb{P}^{n}\right)$ satisfying:
(i) $H^{p}\left(E^{\bullet}\right)=0$ for $p \neq 0,1$;
(ii) $H^{0}\left(E^{\bullet}\right)$ is a torsion-free sheaf framed at ℓ_{∞};
(iii) $H^{1}\left(E^{\bullet}\right)$ is a torsion sheaf whose support does not intersect ℓ_{∞}.

In the case at hand, $H^{0}\left(E^{\bullet}\right)=\operatorname{ker} \beta / \operatorname{im} \alpha$ and $H^{1}\left(E^{\bullet}\right)=\operatorname{coker} \beta$.
Finally, it follows from our description that the moduli spaces $\mathcal{F}_{\mathbb{P}^{n}}(r, c)$ of framed torsion-free instanton sheaves on \mathbb{P}^{n} of rank r and charge c are given by the set of stable solutions of (3) modulo the following action of GL(V):

$$
g \cdot\left(B_{k l}, i_{k}, j_{k}\right)=\left(g B_{k l} g^{-1}, g i_{k}, j_{k} g^{-1}\right) .
$$

Using techniques of Geometric Invariant Theory, one can show that $\mathcal{F}_{\mathbb{P} n}(r, c)$ is non-empty quasi-projective variety for any values of $n \geqslant 2, r \geqslant n-1$ and $c \geqslant 1$; moreover, $\mathcal{F}_{\mathbb{P}^{2}}(r, c)$ and $\mathcal{F}_{\mathbb{P}^{3}}(r, 1)$ are known to be non-singular and irreducible, and to have dimension $2 r c$ and $4 r$, respectively (see [9] and [6]). In general, it is not known whether $\mathcal{F}_{\mathbb{P}^{n}}(r, c)$ is either non-singular or irreducible, and how to compute its dimension (compare with [7, Section 5]).

References

[1] V. Ancona, G. Ottaviani, Stability of special instanton bundles on $\mathbb{P}^{2 n+1}$, Trans. Amer. Math. Soc. 341 (1994) 677-693.
[2] M. Atiyah, V. Drinfeld, N. Hitchin, Yu. Manin, Construction of instantons, Phys. Lett. A 65 (1978) 185-187.
[3] I. Coandă, A. Tikhomirov, G. Trautmann, Irreducibility and smoothness of the moduli space of mathematical 5-instantons over \mathbb{P}^{3}, Int. J. Math. 14 (2003) 1-45.
[4] S. Donaldson, Instantons and geometric invariant theory, Commun. Math. Phys. 93 (1984) 453-460.
[5] G. Fløystad, Monads on projective spaces, Comm. Algebra 28 (2000) 5503-5516.
[6] I.B. Frenkel, M. Jardim, Complex ADHM equations and sheaves on \mathbb{P}^{3}, J. Algebra 319 (2008) 2913-2937.
[7] M. Jardim, Instanton sheaves on complex projective spaces, Collect. Math. 57 (2006) 69-91.
[8] M. Mamone Capria, S.M. Salamon, Yang-Mills fields on quaternionic spaces, Nonlinearity 1 (1988) 517-530.
[9] H. Nakajima, Lectures on Hilbert Schemes of Points on Surfaces, American Mathematical Society, Providence, RI, 1999.
[10] C. Okonek, H. Spindler, Mathematical instanton bundles on $\mathbb{P}^{2 n+1}$, J. Reine Agnew. Math. 364 (1986) 35-50.

[^0]: E-mail address: jardim@ime.unicamp.br.
 1 Partially supported by the CNPq grant number 300991/2004-5.

 1631-073X/\$ - see front matter © 2008 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved. doi:10.1016/j.crma.2008.02.014

