

Available online at www.sciencedirect.com

C. R. Acad. Sci. Paris, Ser. I 346 (2008) 431-434

http://france.elsevier.com/direct/CRASS1/

Probability Theory

Rough path integral of local time

Chunrong Feng^{a,b,c}, Huaizhong Zhao^a

^a Department of Mathematical Sciences, Loughborough University, Loughborough LE11 3TU, UK
 ^b School of Mathematics and System Sciences, Shandong University, Jinan, 250100, China

^c Department of Mathematics, Shanghai Jiaotong University, Shanghai, 200240, China

Received 1 December 2006; accepted after revision 12 February 2008

Available online 28 March 2008

Presented by Marc Yor

Abstract

In this Note, for a continuous semimartingale local time L_t^x , we establish the integral $\int_{-\infty}^{\infty} g(x) dL_t^x$ as a rough path integral for any finite *q*-variation function g ($2 \le q < 3$) by using Lyons' rough path integration. We therefore obtain the Tanaka–Meyer formula for a continuous function f if $\nabla^- f$ exists and is of finite *q*-variation, $2 \le q < 3$. The case when $1 \le q < 2$ was established by Feng and Zhao [C.R. Feng, H.Z. Zhao, Two-parameter *p*, *q*-variation path and integration of local times, Potential Analysis 25 (2006) 165–204] using the Young integral. *To cite this article: C. Feng, H. Zhao, C. R. Acad. Sci. Paris, Ser. I 346 (2008).* © 2008 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Résumé

Intégrale curviligne non régulière du temps local. Dans cette Note, pour un temps local d'une semi-martingale continue, nous définissons l'intégrale $\int_{-\infty}^{\infty} g(x) dL_t^x$ pour toute fonction g de q-variation finie ($2 \le q < 3$) en utilisant l'intégrale de Lyons pour des chemins non-réguliers. Nous obtenons alors la formule de Tanaka–Meyer pour une fonction continue f lorsque $\nabla^- f$ existe et est de q-variation finie avec $2 \le q < 3$. Le cas correspondant à $1 \le q < 2$ utilise l'intégrale de Young (voir Feng et Zhao [C.R. Feng, H.Z. Zhao, Two-parameter p, q-variation path and integration folcal times, Potential Analysis 25 (2006) 165–204.]). *Pour citer cet article : C. Feng, H. Zhao, C. R. Acad. Sci. Paris, Ser. I 346 (2008).*

© 2008 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Consider a continuous semimartingale $X_t = M_t + V_t$, where M_t is a continuous local martingale and V_t is a continuous process with finite variation. In [1], Lemma 2.1 says that the local time L_t^x of X_t is of bounded *p*-variation in *x* for any $t \ge 0$ a.s. for any p > 2. So in Theorem 2.2, we gave a new condition for the Tanaka–Meyer formula and the integral $\int_{-\infty}^{\infty} \nabla^- f(x) d_x L_t^x$ as a Young integral, when $\nabla^- f(x)$ is of bounded *q*-variation $(1 \le q < 2)$. But what about the case $q \ge 2$? Let us first try to define the integral $\int_{-\infty}^{\infty} g(x) d_x L_t^x$ pathwise for a continuous function g(x) with bounded *q*-variation $(2 \le q < 3)$; we also take $2 . We still decompose the local time <math>L_t^x = \tilde{L}_t^x + \sum_k \hat{L}_t^{x_k^*} \mathbf{1}_{\{x_k^* \le x\}}$, where $\hat{L}_t^x := L_t^x - L_t^{x-}$. Here \tilde{L}_t^x is continuous in *x*, and $x_k^*, k = 1, 2, \ldots$, are the countable discontinuous points of L_t^x . From Lemma 2.2 in [1], we know that $h(t, x) := \sum_k \hat{L}_t^{x_k^*} \mathbf{1}_{\{x_k^* \le x\}}$ is of bounded variation in *x* for each *t*. So the key

E-mail addresses: fcr@sjtu.edu.cn (C. Feng), H.Zhao@lboro.ac.uk (H. Zhao).

¹⁶³¹⁻⁰⁷³X/\$ – see front matter © 2008 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved. doi:10.1016/j.crma.2008.02.015

point is to define $\int_{-\infty}^{\infty} g(x) d_x \tilde{L}_t^x$ pathwise for continuous g(x) with bounded *q*-variation ($2 \le q < 3$). For this, we will use Lyons' rough path theory, see [3] and also [2].

Let [x', x''] be any interval in *R*. From the proof of Lemma 2.1 in [1], for any $p \ge 2$, we know that there exists a constant c > 0 such that $E|\tilde{L}_t^b - \tilde{L}_t^a|^p \le c|b-a|^{p/2}$, i.e. \tilde{L}_t^x satisfies the Hölder condition in [3] with exponent $\frac{1}{2}$. Denote by w a control of g(x). Then $|g(b) - g(a)|^q \le w(a, b)$, for any $(a, b) \in \Delta := \{(a, b): x' \le a < b \le x''\}$. It is obvious that $w_1(a, b) := w(a, b) + (b-a)$ is also a control of g. Set $h = \frac{1}{q}$. It is trivial to see that, for any $\theta > q$ (so $h\theta > 1$), $|g(b) - g(a)|^\theta \le w_1(a, b)^{h\theta}$, for any $(a, b) \in \Delta$. Denote $Z_x = (\tilde{L}_t^x, g(x))$. Then we can see that Z_x satisfies, for such $h = \frac{1}{q}$, and any $\theta > q$,

$$E|Z_b - Z_a|^{\theta} \leqslant cw_1(a,b)^{h\theta} \quad \text{for any } (a,b) \in \Delta,$$
(1)

for some constant c > 0. Set $w_1(x) := w_1(x', x)$, and for any $m \in N$, $D_m := \{x' = x_0^m < x_1^m < \dots < x_{2^m}^m = x''\}$ a partition of [x', x''] such that $w_1(x_l^m) - w_1(x_{l-1}^m) = \frac{1}{2^m}w_1(x', x'')$. It is obvious that $x_l^m - x_{l-1}^m \leq \frac{1}{2^m}w_1(x', x'')$. Now define a continuous and bounded variation path Z(m) by:

$$Z(m)_{x} := Z_{x_{l-1}^{m}} + \frac{w_{1}(x) - w_{1}(x_{l-1}^{m})}{w_{1}(x_{l}^{m}) - w_{1}(x_{l-1}^{m})} \Delta_{l}^{m} Z \quad \text{for } x_{l-1}^{m} \leqslant x < x_{l}^{m},$$

$$\tag{2}$$

where $l = 1, ..., 2^m$, and $\Delta_l^m Z = Z_{x_l^m} - Z_{x_{l-1}^m}$. The corresponding smooth rough path $\mathbf{Z}(m)$ is built by taking its iterated path integrals, i.e. for any $(a, b) \in \Delta$,

$$\mathbf{Z}(m)_{a,b}^{j} = \int_{a < x_{1} < \dots < x_{j} < b} \mathrm{d}Z(m)_{x_{1}} \otimes \dots \otimes \mathrm{d}Z(m)_{x_{j}}.$$
(3)

Recall that the θ -variation metric d_{θ} on $C_{0,\theta}(\Delta, T^{([\theta])}(R^2))$ is defined by [3]:

$$d_{\theta}(\mathbf{Z}, \mathbf{Y}) = \max_{1 \leq i \leq [\theta]} d_{i,\theta}(\mathbf{Z}^{i}, \mathbf{Y}^{i}) = \max_{1 \leq i \leq [\theta]} \sup_{D_{[x', x'']}} \left(\sum_{l} |\mathbf{Z}_{x_{l-1}, x_{l}}^{i} - \mathbf{Y}_{x_{l-1}, x_{l}}^{i}|^{\theta/i} \right)^{l/\theta}.$$

In the following, we will show that $\{\mathbf{Z}(m)\}_{m \in N}$ converges to a geometric rough path \mathbf{Z} in the θ -variation topology when $2 \leq q < 3$, in which $\mathbf{Z}_{a,b}^1 = Z_b - Z_a$. We call \mathbf{Z} the canonical geometric rough path associated with Z.

About the first level path $\mathbf{Z}(m)_{a,b}^1$, the method and results are similar to those in Chapter 4 in [3]. We can prove $\sup_m \sup_D \sum_l |\mathbf{Z}(m)_{x_{l-1},x_l}^1|^{\theta} < \infty$ a.s. and,

Theorem 1. Assume $q \ge 1$. Let $\theta > q$. For the continuous process $Z_x = (\tilde{L}_t^x, g(x))$ satisfying (1), we have

$$\sum_{m=1}^{\infty} \sup_{D} \left(\sum_{l} \left| \mathbf{Z}(m)_{x_{l-1}, x_{l}}^{1} - \mathbf{Z}_{x_{l-1}, x_{l}}^{1} \right|^{\theta} \right)^{1/\theta} < \infty \quad a.s.$$

$$\tag{4}$$

In particular, $(\mathbf{Z}(m)_{a,b}^1)$ converges to $(\mathbf{Z}_{a,b}^1)$ in the θ -variation distance a.s. for any $(a, b) \in \Delta$.

We next consider the second level path $\mathbf{Z}(m)_{a,b}^2$. As in [3], we can also see that, if $m \leq n$, $\mathbf{Z}(m)_{x_{k-1}^n, x_k^n}^2 = 2^{2(m-n)-1} (\Delta_l^m Z)^{\otimes 2}$, where *l* is chosen such that $x_{l-1}^m \leq x_{k-1}^n < x_k^n \leq x_l^m$, and if m > n,

$$\mathbf{Z}(m)_{x_{k-1}^n,x_k^n}^2 = \frac{1}{2}\Delta_k^n Z \otimes \Delta_k^n Z + \frac{1}{2}\sum_{\substack{r,l=2^{m-n}(k-1)+1\\r< l}}^{2^{m-n}k} \left(\Delta_r^m Z \otimes \Delta_l^m Z - \Delta_l^m Z \otimes \Delta_r^m Z\right).$$
(5)

Similar to the proof of Proposition 4.3.3 in [3], we have:

Proposition 2. Assume $q \ge 2$. Let $\theta > q$. Then for $m \le n$,

$$\sum_{k=1}^{2^{n}} E \left| \mathbf{Z}(m+1)_{x_{k-1}^{n}, x_{k}^{n}}^{2} - \mathbf{Z}(m)_{x_{k-1}^{n}, x_{k}^{n}}^{2} \right|^{\theta/2} \leqslant C \left(\frac{1}{2^{n+m}}\right)^{(\theta h-1)/2},\tag{6}$$

where C depends on θ , $h(:=\frac{1}{q})$, $w_1(x', x'')$, and c in (1).

For the case when m > n, we have the following key estimate:

Proposition 3. Assume $2 \leq q < 4$. Let $q < \theta < 4$. Then for m > n, we have that

$$E\left|\mathbf{Z}(m+1)_{x_{k-1}^{n},x_{k}^{n}}^{2}-\mathbf{Z}(m)_{x_{k-1}^{n},x_{k}^{n}}^{2}\right|^{\theta/2} \leqslant C\left[\left(\frac{1}{2^{n}}\right)^{\theta/4}\left(\frac{1}{2^{m}}\right)^{\frac{1}{2}h\theta}+\left(\frac{1}{2^{n}}\right)^{\theta/2}\left(\frac{1}{2^{m}}\right)^{\frac{1}{2}h\theta-\frac{1}{8}\theta}\right],\tag{7}$$

where *C* is a generic constant and also depends on θ , $h(:=\frac{1}{a})$, $w_1(x', x'')$, and *c* in (1).

The proof of the proposition is based on (5) and the following estimate (8). To see (8), first by using Tanaka's formula (cf. [4] and [5]) and $\sum_{x_k^* \leq x} \hat{L}_t^{x_k^*} = \int_0^t \mathbf{1}_{\{X(s) \leq x\}} dV_s = V_t - V_0 - \int_0^t \mathbf{1}_{\{X(s) > x\}} dV_s$, we have that

$$\tilde{L}_t^x = (X_t - x)^+ - (X_0 - x)^+ - \int_0^t \mathbf{1}_{\{X_s > x\}} \, \mathrm{d}M_s - (V_t - V_0) := \varphi_t(x) - \int_0^t \mathbf{1}_{\{X_s > x\}} \, \mathrm{d}M_s - (V_t - V_0).$$

Now by using the following estimates in the proof of Lemma 2.1 in [1]: for any $\gamma \ge 1$ and $a_i < a_{i+1}$, $|\varphi_t(a_{i+1}) - \varphi_t(a_i)|^{\gamma} \le 2^{\gamma}(a_{i+1} - a_i)^{\gamma}$, $E|\int_0^t \mathbf{1}_{\{a_i < X_s \le a_{i+1}\}} dM_s|^{\gamma} \le c(a_{i+1} - a_i)^{\gamma/2}$, we have that

$$E\left[\Delta_{2r-1}^{m+1}\tilde{L}_{t}^{x}\Delta_{2l-1}^{m+1}\tilde{L}_{t}^{x}\right] \leq C\left[\left(\frac{1}{2^{m+1}}\right)^{2}w_{1}(x',x'')^{2} + 2\left(\frac{1}{2^{m+1}}\right)^{3/2}w_{1}(x',x'')^{3/2}\right] \\ + E\left|\int_{0}^{t} \mathbf{1}_{\{x_{2r-2}^{m+1} < X_{s} \leq x_{2r-1}^{m+1}\}}\mathbf{1}_{\{x_{2l-2}^{m+1} < X_{s} \leq x_{2l-1}^{m+1}\}}\mathbf{d}\langle M \rangle_{s}\right| \\ \leq \begin{cases} C\left(\frac{1}{2^{m+1}}\right)^{3/2}, & \text{if } r \neq l, \\ C\frac{1}{2^{m+1}}, & \text{if } r = l. \end{cases}$$

$$(8)$$

Here *C* is a generic constant and also depends on $w_1(x', x'')$.

From the estimations of Propositions 2, 3 and Proposition 4.1.2 in [3], we obtain:

Theorem 4. Assume $2 \leq q < 4$. Let $q < \theta < 4$. Then for the continuous process $Z_x = (\tilde{L}_t^x, g(x))$ satisfying (1), there exists a unique \mathbf{Z}^i on Δ taking values in $(R^2)^{\otimes i}$ (i = 1, 2) such that

$$\sum_{i=1}^{2} \sup_{D} \left(\sum_{l} \left| \mathbf{Z}(m)_{x_{l-1},x_{l}}^{i} - \mathbf{Z}_{x_{l-1},x_{l}}^{i} \right|^{\theta/i} \right)^{i/\theta} \to 0,$$

both almost surely and in $L^1(\Omega, \mathcal{F}, P)$ as $m \to \infty$. In particular, when $2 \leq q < 3$, $\mathbf{Z} = (1, \mathbf{Z}^1, \mathbf{Z}^2)$ is the canonical geometric rough path associated with Z_{\cdot} . Moreover, $\mathbf{Z}_{a,b}^1 = Z_b - Z_a$.

In the following, we will only consider the case that $2 \leq q < 3$ and take $\theta \in (q, 3)$. From Chen's identity, it is easy to know that for any $(a, b) \in \Delta$, $\mathbf{Z}_{a,b}^2 = \lim_{m(D_{[a,b]})\to 0} \sum_{i=0}^{r-1} (\mathbf{Z}_{x_i,x_{i+1}}^2 + \mathbf{Z}_{a,x_i}^1 \otimes \mathbf{Z}_{x_i,x_{i+1}}^1)$. So there exists:

$$\lim_{n(D_{[a,b]})\to 0} \sum_{i=0}^{r-1} \left((\mathbf{Z}_{x_{i},x_{i+1}}^{2})_{2,1} + g(x_{i})(\tilde{L}_{t}^{x_{i+1}} - \tilde{L}_{t}^{x_{i}}) \right)$$

$$= \lim_{m(D_{[a,b]})\to 0} \sum_{i=0}^{r-1} \left((\mathbf{Z}_{x_{i},x_{i+1}}^{2})_{2,1} + \left(g(x_{i}) - g(a) \right) (\tilde{L}_{t}^{x_{i+1}} - \tilde{L}_{t}^{x_{i}}) \right) + g(a)(\tilde{L}_{t}^{b} - \tilde{L}_{t}^{a})$$

$$= (\mathbf{Z}_{a,b}^{2})_{2,1} + g(a)(\tilde{L}_{t}^{b} - \tilde{L}_{t}^{a}). \tag{9}$$

Denote this limit by $\int_{a}^{b} g(x) d\tilde{L}_{t}^{x}$. Here $(\mathbf{Z}_{a,b}^{2})_{2,1}$ is the lower-left element of the 2 × 2 matrix $\mathbf{Z}_{a,b}^{2}$.

Let $Z_j(x) := (\tilde{L}_t^x, g_j(x))$, where $g_j(\cdot)$ is of bounded *q*-variation uniformly in *j* for $2 \le q < 3$, and when $j \to \infty$, $g_j(x) \to g(x)$ for all $x \in R$. Repeating the above argument, for each *j*, we can find the canonical geometric rough path $\mathbf{Z}_j = (1, \mathbf{Z}_j^1, \mathbf{Z}_j^2)$ associated with Z_j , the integral $\int_a^b g_j(x) d\tilde{L}_t^x = ((\mathbf{Z}_j)_{a,b}^2)_{2,1} + g_j(a)(\tilde{L}_t^b - \tilde{L}_t^a)$, and the smooth rough path $\mathbf{Z}_j(m) = (1, \mathbf{Z}_j(m)^1, \mathbf{Z}_j(m)^2)$. Actually, $(\mathbf{Z}_j)_{a,b}^1 \to \mathbf{Z}_{a,b}^1$ in the sense of the uniform topology, and also in the sense of the θ -variation topology. As for $(\mathbf{Z}_j)_{a,b}^2$, we can easily see that

$$d_{2,\theta}\left((\mathbf{Z}_{j})^{2}, \mathbf{Z}^{2}\right) \leq d_{2,\theta}\left((\mathbf{Z}_{j})^{2}, \left(\mathbf{Z}_{j}(m)\right)^{2}\right) + d_{2,\theta}\left(\left(\mathbf{Z}_{j}(m)\right)^{2}, \mathbf{Z}(m)^{2}\right) + d_{2,\theta}\left(\mathbf{Z}(m)^{2}, \mathbf{Z}^{2}\right).$$
(10)

From Theorem 4, we know that $d_{2,\theta}(\mathbf{Z}(m)^2, \mathbf{Z}^2) \to 0$ as $m \to \infty$. Moreover, it is not difficult to see from the proofs of Propositions 2, 3, and Theorem 4, that $d_{2,\theta}((\mathbf{Z}_j)^2, (\mathbf{Z}_j(m))^2) \to 0$ as $m \to \infty$ uniformly in *j*. It is also easy to prove that, for any fixed *m*, $d_{2,\theta}((\mathbf{Z}_j(m))^2, \mathbf{Z}(m)^2) \to 0$ as $j \to \infty$. Hence it follows from a standard argument that $d_{2,\theta}((\mathbf{Z}_j)^2, \mathbf{Z}^2) \to 0$ as $j \to \infty$. This implies that $(\mathbf{Z}_j)_{a,b}^2 \to \mathbf{Z}_{a,b}^2$ as $j \to \infty$. Then by (9) and the definition of $\int_a^b g_j(x) d\tilde{L}_t^x$, we know that $\int_a^b g_j(x) d\tilde{L}_t^x \to \int_a^b g(x) d\tilde{L}_t^x$ as $j \to \infty$. Note now that the local time L_t^x has a compact support in *x* a.s. So it is easy to see from taking [x', x''] covering the support of L_t^x that the above construction of the integrals and the convergence can work for the integrals on *R*. Therefore we have:

Proposition 5. Let $Z_j(x) := (\tilde{L}_t^x, g_j(x)), Z(x) := (\tilde{L}_t^x, g(x)),$ where $g_j(\cdot), g(\cdot)$ are of bounded q-variation uniformly in $j, 2 \leq q < 3$. Assume $g_j(x) \to g(x)$ as $j \to \infty$ for all $x \in R$. Then as $j \to \infty$, $\mathbf{Z}_j(\cdot) \to \mathbf{Z}(\cdot)$ a.s. in the θ -variation distance. Moreover, as $j \to \infty$, $\int_{-\infty}^{\infty} g_j(x) d\tilde{L}_t^x \to \int_{-\infty}^{\infty} g(x) d\tilde{L}_t^x$ a.s.

For the jump part h(t, x) of the local time, from Lebesgue's dominated convergence theorem, $\int_{-\infty}^{\infty} g_j(x) dh(t, x) \rightarrow \int_{-\infty}^{\infty} g(x) dh(t, x)$, as $j \rightarrow \infty$. So we can get $\int_{-\infty}^{\infty} g_j(x) dL_t^x \rightarrow \int_{-\infty}^{\infty} g(x) dL_t^x$, as $j \rightarrow \infty$. Note that we can choose smooth g_j such that $g_j(x) \rightarrow g(x)$ as $j \rightarrow \infty$ for each x. In this case, the rough path integral $\int_{-\infty}^{\infty} g_j(x) d\tilde{L}_t^x$ agrees with the Riemann integral and converges to the rough path integral $\int_{-\infty}^{\infty} g(x) d\tilde{L}_t^x$. If g(x) has finite discontinuities, we can treat it easily by considering the integral piece by piece. Finally, we deduce an extension of the Tanaka–Meyer formula by a smoothing procedure.

Theorem 6. Let $X = (X_t)_{t \ge 0}$ be a continuous semimartingale and $f : R \to R$ be an absolutely continuous function and have left derivative $\nabla^- f$. Assume that, $\nabla^- f$ is left continuous with finite discontinuities, locally bounded, and is of bounded q-variation, where $1 \le q < 3$. Then $\int_{-\infty}^{\infty} \nabla^- f(x) d_x L_t^x$ has a modification which is continuous in t such that P-a.s.

$$f(X_t) = f(X_0) + \int_0^t \nabla^- f(X_s) \, \mathrm{d}X_s - \int_{-\infty}^\infty \nabla^- f(x) \, \mathrm{d}_x L_t^x, \quad 0 \le t < \infty.$$
(11)

Here the integral $\int_{-\infty}^{\infty} \nabla^{-} f(x) d_{x} L_{t}^{x}$ *is a Lebesgue–Stieltjes integral when* q = 1*, a Young integral when* 1 < q < 2*, and a Lyons' rough path integral when* $2 \leq q < 3$ *, respectively.*

Remark 1. Although $\int_{-\infty}^{\infty} \nabla^{-} f(x) d_{x} L_{t}^{x}$ has a continuous version, it is not clear whether or not $\mathbf{Z}(t)$ in the rough path space $(\Omega_{\theta}, d_{\theta})$ has a version which is continuous in t in the metric d_{θ} .

References

- [1] C.R. Feng, H.Z. Zhao, Two-parameter p, q-variation path and integration of local times, Potential Analysis 25 (2006) 165–204.
- [2] A. Lejay, An introduction to rough paths, in: Sèminaire de probabilitès XXXVII, in: Lecture Notes in Mathematics, vol. 1832, Springer-Verlag, 2003, pp. 1–59.
- [3] T. Lyons, Z. Qian, System Control and Rough Paths, Clarendon Press, Oxford, 2002.
- [4] I. Karatzas, S.E. Shreve, Brownian Motion and Stochastic Calculus, second ed., Springer-Verlag, New York, 1998.
- [5] D. Revuz, M. Yor, Continuous Martingales and Brownian Motion, second ed., Springer-Verlag, Berlin, 1994.