Probability Theory

Rough path integral of local time

Chunrong Feng ${ }^{\text {a,b,c }}$, Huaizhong Zhao ${ }^{\text {a }}$
${ }^{\text {a }}$ Department of Mathematical Sciences, Loughborough University, Loughborough LE11 3TU, UK
${ }^{\text {b }}$ School of Mathematics and System Sciences, Shandong University, Jinan, 250100, China
${ }^{\text {c }}$ Department of Mathematics, Shanghai Jiaotong University, Shanghai, 200240, China

Received 1 December 2006; accepted after revision 12 February 2008
Available online 28 March 2008
Presented by Marc Yor

Abstract

In this Note, for a continuous semimartingale local time L_{t}^{x}, we establish the integral $\int_{-\infty}^{\infty} g(x) \mathrm{d} L_{t}^{x}$ as a rough path integral for any finite q-variation function $g(2 \leqslant q<3)$ by using Lyons' rough path integration. We therefore obtain the Tanaka-Meyer formula for a continuous function f if $\nabla^{-} f$ exists and is of finite q-variation, $2 \leqslant q<3$. The case when $1 \leqslant q<2$ was established by Feng and Zhao [C.R. Feng, H.Z. Zhao, Two-parameter p, q-variation path and integration of local times, Potential Analysis 25 (2006) 165-204] using the Young integral. To cite this article: C. Feng, H. Zhao, C. R. Acad. Sci. Paris, Ser. I 346 (2008). © 2008 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Résumé

Intégrale curviligne non régulière du temps local. Dans cette Note, pour un temps local d'une semi-martingale continue, nous définissons l'intégrale $\int_{-\infty}^{\infty} g(x) \mathrm{d} L_{t}^{x}$ pour toute fonction g de q-variation finie ($2 \leqslant q<3$) en utilisant l'intégrale de Lyons pour des chemins non-réguliers. Nous obtenons alors la formule de Tanaka-Meyer pour une fonction continue f lorsque $\nabla^{-} f$ existe et est de q-variation finie avec $2 \leqslant q<3$. Le cas correspondant à $1 \leqslant q<2$ utilise l'intégrale de Young (voir Feng et Zhao [C.R. Feng, H.Z. Zhao, Two-parameter p, q-variation path and integration of local times, Potential Analysis 25 (2006) 165-204.]). Pour citer cet article: C. Feng, H. Zhao, C. R. Acad. Sci. Paris, Ser. I 346 (2008). © 2008 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Consider a continuous semimartingale $X_{t}=M_{t}+V_{t}$, where M_{t} is a continuous local martingale and V_{t} is a continuous process with finite variation. In [1], Lemma 2.1 says that the local time L_{t}^{x} of X_{t} is of bounded p-variation in x for any $t \geqslant 0$ a.s. for any $p>2$. So in Theorem 2.2, we gave a new condition for the Tanaka-Meyer formula and the integral $\int_{-\infty}^{\infty} \nabla^{-} f(x) \mathrm{d}_{x} L_{t}^{x}$ as a Young integral, when $\nabla^{-} f(x)$ is of bounded q-variation $(1 \leqslant q<2)$. But what about the case $q \geqslant 2$? Let us first try to define the integral $\int_{-\infty}^{\infty} g(x) \mathrm{d}_{x} L_{t}^{x}$ pathwise for a continuous function $g(x)$ with bounded q-variation $(2 \leqslant q<3)$; we also take $2<p<3$. We still decompose the local time $L_{t}^{x}=\tilde{L}_{t}^{x}+\sum_{k} \hat{L}_{t}^{x_{k}^{*}} 1_{\left\{x_{k}^{*} \leqslant x\right\}}$, where $\hat{L}_{t}^{x}:=L_{t}^{x}-L_{t}^{x-}$. Here \tilde{L}_{t}^{x} is continuous in x, and $x_{k}^{*}, k=1,2, \ldots$, are the countable discontinuous points of L_{t}^{x}. From Lemma 2.2 in [1], we know that $h(t, x):=\sum_{k} \hat{L}_{t}^{x_{k}^{*}} 1_{\left\{x_{k}^{*} \leqslant x\right\}}$ is of bounded variation in x for each t. So the key

[^0]point is to define $\int_{-\infty}^{\infty} g(x) \mathrm{d}_{x} \tilde{L}_{t}^{x}$ pathwise for continuous $g(x)$ with bounded q-variation $(2 \leqslant q<3)$. For this, we will use Lyons' rough path theory, see [3] and also [2].

Let $\left[x^{\prime}, x^{\prime \prime}\right]$ be any interval in R. From the proof of Lemma 2.1 in [1], for any $p \geqslant 2$, we know that there exists a constant $c>0$ such that $E\left|\tilde{L}_{t}^{b}-\tilde{L}_{t}^{a}\right|^{p} \leqslant c|b-a|^{p / 2}$, i.e. \tilde{L}_{t}^{x} satisfies the Hölder condition in [3] with exponent $\frac{1}{2}$. Denote by w a control of $g(x)$. Then $|g(b)-g(a)|^{q} \leqslant w(a, b)$, for any $(a, b) \in \Delta:=\left\{(a, b): x^{\prime} \leqslant a<b \leqslant x^{\prime \prime}\right\}$. It is obvious that $w_{1}(a, b):=w(a, b)+(b-a)$ is also a control of g. Set $h=\frac{1}{q}$. It is trivial to see that, for any $\theta>q$ (so $h \theta>1),|g(b)-g(a)|^{\theta} \leqslant w_{1}(a, b)^{h \theta}$, for any $(a, b) \in \Delta$. Denote $Z_{x}=\left(\tilde{L}_{t}^{x}, g(x)\right)$. Then we can see that Z_{x} satisfies, for such $h=\frac{1}{q}$, and any $\theta>q$,

$$
\begin{equation*}
E\left|Z_{b}-Z_{a}\right|^{\theta} \leqslant c w_{1}(a, b)^{h \theta} \quad \text { for any }(a, b) \in \Delta \tag{1}
\end{equation*}
$$

for some constant $c>0$. Set $w_{1}(x):=w_{1}\left(x^{\prime}, x\right)$, and for any $m \in N, D_{m}:=\left\{x^{\prime}=x_{0}^{m}<x_{1}^{m}<\cdots<x_{2^{m}}^{m}=x^{\prime \prime}\right\}$ a partition of $\left[x^{\prime}, x^{\prime \prime}\right]$ such that $w_{1}\left(x_{l}^{m}\right)-w_{1}\left(x_{l-1}^{m}\right)=\frac{1}{2^{m}} w_{1}\left(x^{\prime}, x^{\prime \prime}\right)$. It is obvious that $x_{l}^{m}-x_{l-1}^{m} \leqslant \frac{1}{2^{m}} w_{1}\left(x^{\prime}, x^{\prime \prime}\right)$. Now define a continuous and bounded variation path $Z(m)$ by:

$$
\begin{equation*}
Z(m)_{x}:=Z_{x_{l-1}^{m}}+\frac{w_{1}(x)-w_{1}\left(x_{l-1}^{m}\right)}{w_{1}\left(x_{l}^{m}\right)-w_{1}\left(x_{l-1}^{m}\right)} \Delta_{l}^{m} Z \quad \text { for } x_{l-1}^{m} \leqslant x<x_{l}^{m} \tag{2}
\end{equation*}
$$

where $l=1, \ldots, 2^{m}$, and $\Delta_{l}^{m} Z=Z_{x_{l}^{m}}-Z_{x_{l-1}^{m}}$. The corresponding smooth rough path $\mathbf{Z}(m)$ is built by taking its iterated path integrals, i.e. for any $(a, b) \in \Delta$,

$$
\begin{equation*}
\mathbf{Z}(m)_{a, b}^{j}=\int_{a<x_{1}<\cdots<x_{j}<b} \mathrm{~d} Z(m)_{x_{1}} \otimes \cdots \otimes \mathrm{~d} Z(m)_{x_{j}} \tag{3}
\end{equation*}
$$

Recall that the θ-variation metric d_{θ} on $C_{0, \theta}\left(\Delta, T^{([\theta])}\left(R^{2}\right)\right)$ is defined by [3]:

$$
d_{\theta}(\mathbf{Z}, \mathbf{Y})=\max _{1 \leqslant i \leqslant[\theta]} d_{i, \theta}\left(\mathbf{Z}^{i}, \mathbf{Y}^{i}\right)=\max _{1 \leqslant i \leqslant[\theta]} \sup _{D_{\left[x^{\prime}, x^{\prime \prime}\right]}}\left(\sum_{l}\left|\mathbf{Z}_{x_{l-1}, x_{l}}^{i}-\mathbf{Y}_{x_{l-1}, x_{l}}^{i}\right|^{\theta / i}\right)^{i / \theta}
$$

In the following, we will show that $\{\mathbf{Z}(m)\}_{m \in N}$ converges to a geometric rough path \mathbf{Z} in the θ-variation topology when $2 \leqslant q<3$, in which $\mathbf{Z}_{a, b}^{1}=Z_{b}-Z_{a}$. We call \mathbf{Z} the canonical geometric rough path associated with Z.

About the first level path $\mathbf{Z}(m)_{a, b}^{1}$, the method and results are similar to those in Chapter 4 in [3]. We can prove $\sup _{m} \sup _{D} \sum_{l}\left|\mathbf{Z}(m)_{x_{l-1}, x_{l}}^{1}\right|^{\theta}<\infty$ a.s. and,

Theorem 1. Assume $q \geqslant 1$. Let $\theta>q$. For the continuous process $Z_{x}=\left(\tilde{L}_{t}^{x}, g(x)\right)$ satisfying (1), we have

$$
\begin{equation*}
\sum_{m=1}^{\infty} \sup _{D}\left(\sum_{l}\left|\mathbf{Z}(m)_{x_{l-1}, x_{l}}^{1}-\mathbf{Z}_{x_{l-1}, x_{l}}^{1}\right|^{\theta}\right)^{1 / \theta}<\infty \quad \text { a.s. } \tag{4}
\end{equation*}
$$

In particular, $\left(\mathbf{Z}(m)_{a, b}^{1}\right)$ converges to $\left(\mathbf{Z}_{a, b}^{1}\right)$ in the θ-variation distance a.s. for any $(a, b) \in \Delta$.
We next consider the second level path $\mathbf{Z}(m)_{a, b}^{2}$. As in [3], we can also see that, if $m \leqslant n, \mathbf{Z}(m)_{x_{k-1}^{n}, x_{k}^{n}}^{2}=$ $2^{2(m-n)-1}\left(\Delta_{l}^{m} Z\right)^{\otimes 2}$, where l is chosen such that $x_{l-1}^{m} \leqslant x_{k-1}^{n}<x_{k}^{n} \leqslant x_{l}^{m}$, and if $m>n$,

$$
\begin{equation*}
\mathbf{Z}(m)_{x_{k-1}^{n}, x_{k}^{n}}^{2}=\frac{1}{2} \Delta_{k}^{n} Z \otimes \Delta_{k}^{n} Z+\frac{1}{2} \sum_{\substack{r, l=2^{m-n}(k-1)+1 \\ r<l}}^{2^{m-n} k}\left(\Delta_{r}^{m} Z \otimes \Delta_{l}^{m} Z-\Delta_{l}^{m} Z \otimes \Delta_{r}^{m} Z\right) \tag{5}
\end{equation*}
$$

Similar to the proof of Proposition 4.3.3 in [3], we have:
Proposition 2. Assume $q \geqslant 2$. Let $\theta>q$. Then for $m \leqslant n$,

$$
\begin{equation*}
\sum_{k=1}^{2^{n}} E\left|\mathbf{Z}(m+1)_{x_{k-1}^{n}, x_{k}^{n}}^{2}-\mathbf{Z}(m)_{x_{k-1}^{n}, x_{k}^{n}}^{2}\right|^{\theta / 2} \leqslant C\left(\frac{1}{2^{n+m}}\right)^{(\theta h-1) / 2} \tag{6}
\end{equation*}
$$

where C depends on $\theta, h\left(:=\frac{1}{q}\right)$, $w_{1}\left(x^{\prime}, x^{\prime \prime}\right)$, and c in (1).
For the case when $m>n$, we have the following key estimate:
Proposition 3. Assume $2 \leqslant q<4$. Let $q<\theta<4$. Then for $m>n$, we have that

$$
\begin{equation*}
E\left|\mathbf{Z}(m+1)_{x_{k-1}^{n}, x_{k}^{n}}^{2}-\mathbf{Z}(m)_{x_{k-1}^{n}, x_{k}^{n}}^{2}\right|^{\theta / 2} \leqslant C\left[\left(\frac{1}{2^{n}}\right)^{\theta / 4}\left(\frac{1}{2^{m}}\right)^{\frac{1}{2} h \theta}+\left(\frac{1}{2^{n}}\right)^{\theta / 2}\left(\frac{1}{2^{m}}\right)^{\frac{1}{2} h \theta-\frac{1}{8} \theta}\right], \tag{7}
\end{equation*}
$$

where C is a generic constant and also depends on $\theta, h\left(:=\frac{1}{q}\right), w_{1}\left(x^{\prime}, x^{\prime \prime}\right)$, and c in (1).
The proof of the proposition is based on (5) and the following estimate (8). To see (8), first by using Tanaka's formula (cf. [4] and [5]) and $\sum_{x_{k}^{*} \leqslant x} \hat{L}_{t}^{x_{k}^{*}}=\int_{0}^{t} 1_{\{X(s) \leqslant x\}} \mathrm{d} V_{s}=V_{t}-V_{0}-\int_{0}^{t} 1_{\{X(s)>x\}} \mathrm{d} V_{s}$, we have that

$$
\tilde{L}_{t}^{x}=\left(X_{t}-x\right)^{+}-\left(X_{0}-x\right)^{+}-\int_{0}^{t} 1_{\left\{X_{s}>x\right\}} \mathrm{d} M_{s}-\left(V_{t}-V_{0}\right):=\varphi_{t}(x)-\int_{0}^{t} 1_{\left\{X_{s}>x\right\}} \mathrm{d} M_{s}-\left(V_{t}-V_{0}\right) .
$$

Now by using the following estimates in the proof of Lemma 2.1 in [1]: for any $\gamma \geqslant 1$ and $a_{i}<a_{i+1}, \mid \varphi_{t}\left(a_{i+1}\right)-$ $\left.\varphi_{t}\left(a_{i}\right)\right|^{\gamma} \leqslant 2^{\gamma}\left(a_{i+1}-a_{i}\right)^{\gamma}, E\left|\int_{0}^{t} 1_{\left\{a_{i}<X_{s} \leqslant a_{i+1}\right\}} \mathrm{d} M_{s}\right|^{\gamma} \leqslant c\left(a_{i+1}-a_{i}\right)^{\gamma / 2}$, we have that

$$
\begin{align*}
E\left[\Delta_{2 r-1}^{m+1} \tilde{L}_{t}^{x} \Delta_{2 l-1}^{m+1} \tilde{L}_{t}^{x}\right] \leqslant & C\left[\left(\frac{1}{2^{m+1}}\right)^{2} w_{1}\left(x^{\prime}, x^{\prime \prime}\right)^{2}+2\left(\frac{1}{2^{m+1}}\right)^{3 / 2} w_{1}\left(x^{\prime}, x^{\prime \prime}\right)^{3 / 2}\right] \\
& \left.+E \mid \int_{0}^{t} 1_{\left\{x_{2 r-2}^{m+2}<X_{s} \leqslant x_{2 r-1}^{m+1}\right.}\right\}_{\left\{x_{2 l-2}^{m+1}<X_{s} \leqslant x_{2 l-1}^{m+1}\right\}} \mathrm{d}\langle M\rangle_{s} \mid \\
& \leqslant \begin{cases}C\left(\frac{1}{2^{m+1}}\right)^{3 / 2}, & \text { if } r \neq l, \\
C \frac{1}{2^{m+1}}, & \text { if } r=l .\end{cases} \tag{8}
\end{align*}
$$

Here C is a generic constant and also depends on $w_{1}\left(x^{\prime}, x^{\prime \prime}\right)$.
From the estimations of Propositions 2, 3 and Proposition 4.1.2 in [3], we obtain:
Theorem 4. Assume $2 \leqslant q<4$. Let $q<\theta<4$. Then for the continuous process $Z_{x}=\left(\tilde{L}_{t}^{x}, g(x)\right)$ satisfying (1), there exists a unique \mathbf{Z}^{i} on Δ taking values in $\left(R^{2}\right)^{\otimes i}(i=1,2)$ such that

$$
\sum_{i=1}^{2} \sup _{D}\left(\sum_{l}\left|\mathbf{Z}(m)_{x_{l-1}, x_{l}}^{i}-\mathbf{Z}_{x_{l-1}, x_{l}}^{i}\right|^{\theta / i}\right)^{i / \theta} \rightarrow 0
$$

both almost surely and in $L^{1}(\Omega, \mathcal{F}, P)$ as $m \rightarrow \infty$. In particular, when $2 \leqslant q<3, \mathbf{Z}=\left(1, \mathbf{Z}^{1}, \mathbf{Z}^{2}\right)$ is the canonical geometric rough path associated with Z. Moreover, $\mathbf{Z}_{a, b}^{1}=Z_{b}-Z_{a}$.

In the following, we will only consider the case that $2 \leqslant q<3$ and take $\theta \in(q, 3)$. From Chen's identity, it is easy to know that for any $(a, b) \in \Delta, \mathbf{Z}_{a, b}^{2}=\lim _{m\left(D_{[a, b]}\right) \rightarrow 0} \sum_{i=0}^{r-1}\left(\mathbf{Z}_{x_{i}, x_{i+1}}^{2}+\mathbf{Z}_{a, x_{i}}^{1} \otimes \mathbf{Z}_{x_{i}, x_{i+1}}^{1}\right)$. So there exists:

$$
\begin{align*}
& \lim _{m([a, b]) \rightarrow 0} \sum_{i=0}^{r-1}\left(\left(\mathbf{Z}_{x_{i}, x_{i+1}}^{2}\right)_{2,1}+g\left(x_{i}\right)\left(\tilde{L}_{t}^{x_{i+1}}-\tilde{L}_{t}^{x_{i}}\right)\right) \\
& \quad=\lim _{m\left(D_{[a, b]]} \rightarrow 0\right.} \sum_{i=0}^{r-1}\left(\left(\mathbf{Z}_{x_{i}, x_{i+1}}^{2}\right)_{2,1}+\left(g\left(x_{i}\right)-g(a)\right)\left(\tilde{L}_{t}^{x_{i+1}}-\tilde{L}_{t}^{x_{i}}\right)\right)+g(a)\left(\tilde{L}_{t}^{b}-\tilde{L}_{t}^{a}\right) \\
& \quad=\left(\mathbf{Z}_{a, b}^{2}\right)_{2,1}+g(a)\left(\tilde{L}_{t}^{b}-\tilde{L}_{t}^{a}\right) . \tag{9}
\end{align*}
$$

Denote this limit by $\int_{a}^{b} g(x) \mathrm{d} \tilde{L}_{t}^{x}$. Here $\left(\mathbf{Z}_{a, b}^{2}\right)_{2,1}$ is the lower-left element of the 2×2 matrix $\mathbf{Z}_{a, b}^{2}$.
Let $Z_{j}(x):=\left(\tilde{L}_{t}^{x}, g_{j}(x)\right)$, where $g_{j}(\cdot)$ is of bounded q-variation uniformly in j for $2 \leqslant q<3$, and when $j \rightarrow \infty$, $g_{j}(x) \rightarrow g(x)$ for all $x \in R$. Repeating the above argument, for each j, we can find the canonical geometric rough path $\mathbf{Z}_{j}=\left(1, \mathbf{Z}_{j}^{1}, \mathbf{Z}_{j}^{2}\right)$ associated with Z_{j}, the integral $\int_{a}^{b} g_{j}(x) \mathrm{d} \tilde{L}_{t}^{x}=\left(\left(\mathbf{Z}_{j}\right)_{a, b}^{2}\right)_{2,1}+g_{j}(a)\left(\tilde{L}_{t}^{b}-\tilde{L}_{t}^{a}\right)$, and the smooth rough path $\mathbf{Z}_{j}(m)=\left(1, \mathbf{Z}_{j}(m)^{1}, \mathbf{Z}_{j}(m)^{2}\right)$. Actually, $\left(\mathbf{Z}_{j}\right)_{a, b}^{1} \rightarrow \mathbf{Z}_{a, b}^{1}$ in the sense of the uniform topology, and also in the sense of the θ-variation topology. As for $\left(\mathbf{Z}_{j}\right)_{a, b}^{2}$, we can easily see that

$$
\begin{equation*}
d_{2, \theta}\left(\left(\mathbf{Z}_{j}\right)^{2}, \mathbf{Z}^{2}\right) \leqslant d_{2, \theta}\left(\left(\mathbf{Z}_{j}\right)^{2},\left(\mathbf{Z}_{j}(m)\right)^{2}\right)+d_{2, \theta}\left(\left(\mathbf{Z}_{j}(m)\right)^{2}, \mathbf{Z}(m)^{2}\right)+d_{2, \theta}\left(\mathbf{Z}(m)^{2}, \mathbf{Z}^{2}\right) \tag{10}
\end{equation*}
$$

From Theorem 4, we know that $d_{2, \theta}\left(\mathbf{Z}(m)^{2}, \mathbf{Z}^{2}\right) \rightarrow 0$ as $m \rightarrow \infty$. Moreover, it is not difficult to see from the proofs of Propositions 2, 3, and Theorem 4, that $d_{2, \theta}\left(\left(\mathbf{Z}_{j}\right)^{2},\left(\mathbf{Z}_{j}(m)\right)^{2}\right) \rightarrow 0$ as $m \rightarrow \infty$ uniformly in j. It is also easy to prove that, for any fixed $m, d_{2, \theta}\left(\left(\mathbf{Z}_{j}(m)\right)^{2}, \mathbf{Z}(m)^{2}\right) \rightarrow 0$ as $j \rightarrow \infty$. Hence it follows from a standard argument that $d_{2, \theta}\left(\left(\mathbf{Z}_{j}\right)^{2}, \mathbf{Z}^{2}\right) \rightarrow 0$ as $j \rightarrow \infty$. This implies that $\left(\mathbf{Z}_{j}\right)_{a, b}^{2} \rightarrow \mathbf{Z}_{a, b}^{2}$ as $j \rightarrow \infty$. Then by (9) and the definition of $\int_{a}^{b} g_{j}(x) \mathrm{d} \tilde{L}_{t}^{x}$, we know that $\int_{a}^{b} g_{j}(x) \mathrm{d} \tilde{L}_{t}^{x} \rightarrow \int_{a}^{b} g(x) \mathrm{d} \tilde{L}_{t}^{x}$ as $j \rightarrow \infty$. Note now that the local time L_{t}^{x} has a compact support in x a.s. So it is easy to see from taking $\left[x^{\prime}, x^{\prime \prime}\right]$ covering the support of L_{t}^{x} that the above construction of the integrals and the convergence can work for the integrals on R. Therefore we have:

Proposition 5. Let $Z_{j}(x):=\left(\tilde{L}_{t}^{x}, g_{j}(x)\right), Z(x):=\left(\tilde{L}_{t}^{x}, g(x)\right)$, where $g_{j}(\cdot), g(\cdot)$ are of bounded q-variation uniformly in $j, 2 \leqslant q<3$. Assume $g_{j}(x) \rightarrow g(x)$ as $j \rightarrow \infty$ for all $x \in R$. Then as $j \rightarrow \infty, \mathbf{Z}_{j}(\cdot) \rightarrow \mathbf{Z}(\cdot)$ a.s. in the θ-variation distance. Moreover, as $j \rightarrow \infty, \int_{-\infty}^{\infty} g_{j}(x) \mathrm{d} \tilde{L}_{t}^{x} \rightarrow \int_{-\infty}^{\infty} g(x) \mathrm{d} \tilde{L}_{t}^{x}$ a.s.

For the jump part $h(t, x)$ of the local time, from Lebesgue's dominated convergence theorem, $\int_{-\infty}^{\infty} g_{j}(x) \mathrm{d} h(t, x) \rightarrow$ $\int_{-\infty}^{\infty} g(x) \mathrm{d} h(t, x)$, as $j \rightarrow \infty$. So we can get $\int_{-\infty}^{\infty} g_{j}(x) \mathrm{d} L_{t}^{x} \rightarrow \int_{-\infty}^{\infty} g(x) \mathrm{d} L_{t}^{x}$, as $j \rightarrow \infty$. Note that we can choose smooth g_{j} such that $g_{j}(x) \rightarrow g(x)$ as $j \rightarrow \infty$ for each x. In this case, the rough path integral $\int_{-\infty}^{\infty} g_{j}(x) \mathrm{d} \tilde{L}_{t}^{x}$ agrees with the Riemann integral and converges to the rough path integral $\int_{-\infty}^{\infty} g(x) \mathrm{d} \tilde{L}_{t}^{x}$. If $g(x)$ has finite discontinuities, we can treat it easily by considering the integral piece by piece. Finally, we deduce an extension of the Tanaka-Meyer formula by a smoothing procedure.

Theorem 6. Let $X=\left(X_{t}\right)_{t \geqslant 0}$ be a continuous semimartingale and $f: R \rightarrow R$ be an absolutely continuous function and have left derivative $\nabla^{-} f$. Assume that, $\nabla^{-} f$ is left continuous with finite discontinuities, locally bounded, and is of bounded q-variation, where $1 \leqslant q<3$. Then $\int_{-\infty}^{\infty} \nabla^{-} f(x) \mathrm{d}_{x} L_{t}^{x}$ has a modification which is continuous in t such that P-a.s.

$$
\begin{equation*}
f\left(X_{t}\right)=f\left(X_{0}\right)+\int_{0}^{t} \nabla^{-} f\left(X_{s}\right) \mathrm{d} X_{s}-\int_{-\infty}^{\infty} \nabla^{-} f(x) \mathrm{d}_{x} L_{t}^{x}, \quad 0 \leqslant t<\infty \tag{11}
\end{equation*}
$$

Here the integral $\int_{-\infty}^{\infty} \nabla^{-} f(x) \mathrm{d}_{x} L_{t}^{x}$ is a Lebesgue-Stieltjes integral when $q=1$, a Young integral when $1<q<2$, and a Lyons' rough path integral when $2 \leqslant q<3$, respectively.

Remark 1. Although $\int_{-\infty}^{\infty} \nabla^{-} f(x) \mathrm{d}_{x} L_{t}^{x}$ has a continuous version, it is not clear whether or not $\mathbf{Z}(t)$ in the rough path space $\left(\Omega_{\theta}, d_{\theta}\right)$ has a version which is continuous in t in the metric d_{θ}.

References

[1] C.R. Feng, H.Z. Zhao, Two-parameter p, q-variation path and integration of local times, Potential Analysis 25 (2006) 165-204.
[2] A. Lejay, An introduction to rough paths, in: Sèminaire de probabilitès XXXVII, in: Lecture Notes in Mathematics, vol. 1832, Springer-Verlag, 2003, pp. 1-59.
[3] T. Lyons, Z. Qian, System Control and Rough Paths, Clarendon Press, Oxford, 2002.
[4] I. Karatzas, S.E. Shreve, Brownian Motion and Stochastic Calculus, second ed., Springer-Verlag, New York, 1998.
[5] D. Revuz, M. Yor, Continuous Martingales and Brownian Motion, second ed., Springer-Verlag, Berlin, 1994.

[^0]: E-mail addresses: fcr@situ.edu.cn (C. Feng), H.Zhao@lboro.ac.uk (H. Zhao).

