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Abstract

In this Note, we study a procedure on goodness-of-fit testing for nonlinear time-series models against a large class of alternatives
under nonstationarity and absolute regularity. For that, we define a marked empirical process based on residuals which converges
in distribution to a Gaussian process with respect to the Skorohod topology. This method was first introduced by Stute (1997)
and then widely developed by Ngatchou-Wandji (2002, 2005, 2008) [1–3] under more general conditions. Applications to general
AR-ARCH models are given. To cite this article: M. Harel, E. Elharfaoui, C. R. Acad. Sci. Paris, Ser. I 346 (2008).
© 2008 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Résumé

Le processus empirique marqué pour tester un modèle AR-ARCH général contre un autre AR-ARCH général lorsque
les vecteurs aléatoires sont non stationnaires et absolument réguliers. Nous étudions une procédure pour tester des modèles
de régression non stationnaires et absolument réguliers contre une large classe d’alternatives. Notre idée est d’utiliser un pro-
cessus empirique marqué basé sur les résidus qui converge en loi vers un processus gaussien. Pour citer cet article : M. Harel,
E. Elharfaoui, C. R. Acad. Sci. Paris, Ser. I 346 (2008).
© 2008 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Version française abrégée

Notre but est de tester un modèle de régression hétéroscédastique de la forme

Yi = m(Xi−1, . . . ,Xi−d; θ) + v(Xi−1, . . . ,Xi−d)εi, i � 1 + d

en utilisant une approche non paramétrique, et en prenant en compte l’estimation de θ sous l’hypothèse nulle H0
d’appartenance de la fonction m à un modèle paramétrique H = m(·; θ): θ ∈ Θ}. La fonction v est inconnue et les
bruits εi sont absolument réguliers.
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1631-073X/$ – see front matter © 2008 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.
doi:10.1016/j.crma.2008.02.018
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La suite {Zi = (Xi = (Xi−1, . . . ,Xi−d)′, Yi)} est non stationnaire et absolument régulière. Nos statistiques de test
sont construites selon le processus défini par :

R∗
n(x) = n−1/2

n∑
i=1

1{Xi�x}
(
Yi − m(Xi; θ̃n)

)
, x ∈ R

d

θ̃n désignant un estimateur n−1/2-convergeant du vrai paramètre θ0, et vérifiant la Condition 1 ci-dessous.
Nous pouvons en déduire plusieurs statistiques de test possibles : en particulier, un test de type Cramér–von Mises

basé sur

Tn =
∫ (

R∗
n(x)

)2
w

(
F̂n(x)

)
dF̂n(x)

(w(·) désigne une fonction poids et F̂n est la f.r. empirique de l’échantillon). D’après le Théorème 1 ci-dessous, le
processus R∗

n converge en distribution vers un processus R∗∞. Par conséquent, sous H0, Tn converge en loi vers le
processus T défini ci-dessous.

1. Introduction

The purpose of this Note is to study a general method on goodness-of-fit testing for a nonlinear parametric regres-
sion model. Now, we define our model.

Let {Zi = (Xi , Yi); i � 1} be a sequence of random vectors with continuous distribution functions Hi(z), i � 1,
z is in R

d+1 and we assume that Hi(z) admits a strictly positive density and Hi has the two marginals Fi and Gi .
In this paper, we will suppose that the sequence {Zi}i�1 is absolutely regular with the rate

β(n) = O(τn), 0 < τ < 1. (1)

Suppose that Hi converges to the distribution function H (for the norm of total variation noted ‖·‖) which admits
a strictly positive density and H has the two marginals F and G. Put Hi,j the distribution function of (Zi ,Zj ).
Furthermore, assume that for any l > 1, there exists a continuous distribution function H̃l on R

2d+2 admitting a
strictly positive density with marginals F̃l on R

2d , G̃l on R
2 such that

‖Hi,j − H̃j−i‖ = O(ρi
0), 1 � i < j � n, n � 1, 0 < ρ0 < 1 (2)

for which there exists a sequence {Z̃i = (X̃i , Ỹi ), i � 1} of stationary random vectors absolutely regular with rate (1)
and (Z̃i , Z̃j ) has H̃j−i as distribution function (i < j + 1).

Suppose also that there exists a random vector (X, Y ) in R
d+1 with finite expectation E|Y | and which admits H

as distribution function, so that the regression function m(x) = E(Y | X = x) of Y on X is well defined, where x is
in R

d, is a.s. in x uniquely defined in view of the equation

m(X) = E(Y | X). (3)

Some literature is concerned with parametric modeling in that m is assumed to belong to a given family

H = {
m(·; θ): θ ∈ Θ

}
(4)

of functions, where Θ ⊂ R
p is a proper parameter set.

Consider the general hypothesis testing the null hypothesis that H0 is a parametric regression model and belongs
to a family given: m ∈ H versus the local alternatives H1,n: m ≡ mn ∈ H1,n: H1,n = {m = m(·, θ) + n−1/2r: θ ∈ Θ}
where r is a function satisfying E(r(X̃1)) 	= 0.

For that, we consider an empirical process such that under H0 this process depends of a parameter θ0. First, we start
by estimating the parameter and we prove that the empirical process converges in distribution to a certain centered
Gaussian process when the parameter is replaced by its estimator θ̃n. Under H1,n, the empirical process converges in
distribution to a noncentered Gaussian process which has the same limit covariance function. Put

R∗
n(x) = n−1/2

n∑
1{Xi�x}

(
Yi − m(Xi; θ̃n)

)
, x ∈ R

d (5)

i=1
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a marked empirical process.
The main results will be to prove the weak convergence of the process R∗

n with respect to the Skorohod topology
under some reasonable conditions and to investigate the power of tests based on R∗

n .

2. Conditions and weak convergence of the marked empirical process

For simplicity, we now suppose d = 1.
We know that the process defined in (5) takes its values in the Skorohod space D(−∞,∞) and the convergence in

this space is equivalent to the weak convergence on compacts. This excludes the possibility of handling goodness-of-fit
statistics such as supx∈R |R∗

n(x)|.
To also deal with such statistics, we continuously extend R∗

n to −∞ and ∞ by setting: R∗
n(−∞) = 0, R∗

n(x) is
defined by (5) for x ∈ R and R∗

n(∞) = n−1/2 ∑n
i=1(Yi − m(Xi; θ̃n)).

Then R∗
n becomes a process in D[−∞,∞], which, modulo a continuous transformation, is the same as D[0,1].

Consider the sequence of distribution functions {Fn}n�1 defined by

Fn = n−1
n∑

i=1

Fi.

For the behavior of the process R∗
n defined in (5), some regularity assumptions on the estimator θ̃n will be needed.

These conditions are similar to those of Stute [4] but our sequence {Zi}i�1 is nonstationary and geometrically ab-
solutely regular, rather than being iid.

Condition 1. Under H0, that is m = m(·; θ0) for some unknown θ0 in Θ , θ̃n admits an expansion: n1/2(θ̃n − θ0) =
n−1/2 ∑n

i=1 l(Zi; θ0) + op(1) for some vector-valued function l such that

(i) E[l(Zi; θ0)] = 0 for any i � 1;

(ii) Li,j (θ0) = E[l(Zi; θ0)l′(Zj ; θ0)] exists for all i, j � 1.

Condition 2. (i) m(x; θ) is continuously differentiable at each θ in the interior set Θ0 of Θ . Put

g(x; θ) = ∂m(x; θ)

∂θ
= (

g1(x; θ), . . . , gp(x; θ)
)′ (6)

(ii) there exists an {Fi}i�1 and F -integrable function M(x) such that∣∣gj (x; θ)
∣∣ � M(x), for all θ ∈ Θ and 1 � j � p. (7)

Theorem 1. Assume that for any u ∈ [0,1],
sup
i�1

E
(∣∣Yi − m(Xi)

∣∣2+γ0 | Ui = u
)
< CE

(∣∣Y − m(X)
∣∣2+γ0 | U = u

)
< ∞,

where γ0 > 0, Ui = Fn(Xi), 1 � i � n, U = F(X), C is some positive constant and the conditions (1) and (2) hold
and let Conditions 1 and 2 be satisfied, then R∗

n → R∗∞ in distribution in the space D[−∞,∞] where R∗∞ is a
centered Gaussian process with covariance function K∗(x, y) where

K∗(x, y) = K(x,y) + G′(x; θ0)

(
L1,1(θ0) + 2

∞∑
k=1

L1,k(θ0)

)
G(y; θ0)

− G′(x; θ0)

∞∑
k=0

E
[
1{X̃1�x}

(
Ỹ1 − m(X̃1; θ0)

)
l(Z̃1+k; θ0)

]
− G′(y; θ0)

∞∑
E

[
1{X̃1�y}

(
Ỹ1 − m(X̃1; θ0)

)
l(Z̃1+k; θ0)

]
, (8)
k=0
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G(x; θ) = (
G1(x; θ), . . . ,Gp(x; θ)

)′
, Gj (x; θ) =

x∫
−∞

gj (u; θ)dF(u), 1 � j � p,

and

K(x,y) =
x∧y∫

−∞
Var(Y | X = u)dF(u) + 2

∞∑
k=1

x∫
−∞

y∫
−∞

Cov(Ỹ1, Ỹ1+k | X̃1 = u, X̃1+k = v)dF̃k(u, v). (9)

Corollary 1. Under H1,n, and the conditions of Theorem 1, R∗
n → R∗∞ in distribution in the space Dd [−∞,∞] where

R∗∞ is a Gaussian process with mean s(x) and covariance function K∗(x,y) defined in (8), where

s(x) =
∫

u�x

r(u)dF(u) − G(x; θ0)

∫
u�x

∫
R

r(u)

v(u)
l(u, y; θ0)dH(u, y)

and v(·) continuous are unknown.

3. The testing procedure

From the results obtained in Theorem 1, some testing procedure can be derived.
We can consider the Cramér–von Mises type test defined by

Tn =
∫ (

R∗
n(x)

)2
w

(
F̂n(x)

)
dF̂n(x), (10)

where w is a weight function and F̂n is the empirical distribution function of the random vectors X1, . . . ,Xn.
We easily deduce that under the conditions of Corollary 1, Tn converges in law to T = ∫

(R∗∞(F−1(u)))2w(u)du.
We remark that Tn can be also written as

Tn = 1

n

n∑
i=1

w
(
F̂n(Xi )

)[ n∑
j=1

1[Xj �Xi ]
(
Yj − m(Xj , θ̃n)

)]2

.

The tails probability of the limiting distribution of the Cramer–von Mises test statistics would be very difficult to
compute. That is why it is necessary to proceed to a discretization of T like in Ngatchou-Wandji [1].

As in Ngatchou-Wandji [1], the discretization that we can propose, follows from the Karhunen–Loève expansion
of the processes T .

Denote by W(·) = R∗∞(F−1(·)) the process defined on [0,1]d . Its Karhunen–Loève expansion can be written as

W =
∞∑

j=1

λ
1/2
j Wjfj , (11)

where λ1 � λ2 � · · · are the eigenvalues of the covariance operator B(·) = K∗(F−1(·),F−1(·)) which are supposed
strictly positive, the sequence of functions f1, f2, . . . is a complete orthonormal base for L2[0,1]d of eigenvectors of
the operator B and the random variables Wj = λ

−1/2
j

∫
[0,1]d W(v)fj (v)d(v) are independent N (0,1) under H0.

Then it is possible to choose a test statistic on the form T J
n = ∑J

j=1 W 2
n,j , where J > 1 is the number of the more

informative terms in the development (9) and for any j � 1

Wn,j = λ−1
j n−1

n∑
i=1

R∗
n(Xi )w

(
F̂n(Xi )

)
fj

(
F̂n(Xi )

)
.

Under H0, T J
n converges is law to T J = ∑J

j=1 W 2
j which has asymptotically a chi-square distribution with J degrees

of freedom. However, the λj
′s and fj

′s are difficult to compute in practice. A way to overcome this difficulty was
suggested by Ngatchou-Wandji [1,3] by approximating the integrals by discretization.
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4. Applications to the AR-ARCH model

Now we apply the results of Section 3 to test an AR-ARCH model against an other AR-ARCH model.
Consider a model which can be written in the form

Xi = m(Xi−1, . . . ,Xi−d; θ) + v(Xi−1, . . . ,Xi−d)εi, i � 1 + d, (12)

where θ ∈ Θ ⊂ R
p a proper parameter set, m(·) satisfying Condition 2 and v(·) continuous are unknown.

Let {Zi = (Xi , Yi); i � 1 + d} denotes the random sequence of vectors in R
d+1 defined by

Yi = Xi and Xi = (Xi−1, . . . ,Xi−d)′, i � 1 + d.

We suppose that the sequence {Zi}i�1+d satisfies the conditions (1) and (2) in the introduction and {εi}i�1+d is a
sequence of absolutely regular random variables satisfying (1).

We will use the results of Section 3 to test H0: m(·; θ) ∈ H versus the sequence of alternatives H1,n: m(·; θ) ≡
mn ∈ H1,n.

Theorem 2. Assume that supi�1+d E(|v(Xi )εi |2+γ0) < ∞ and E(|v(X̃1+d)ε1+d |2+γ0) < ∞ hold and that Condi-

tions 1 and 2 also hold. Then under H1,n, T J
n converges in law to T J = ∑J

j=1 W 2
j which has asymptotically a

chi-square distribution with J degrees of freedom and noncentrality parameter ΔJ = ∑J
j=1(δj )

2 where

δj = λ
−1/2
j

{ ∫
[0,1]d

[ ∫
v�u

roF−1(v)dF(v) − G
(
F−1(u); θ0

)]

×
[ ∫

v�u

∫
R

roF−1(v)

voF−1(v)
l
(
F−1(v), y; θ0

)
dF̃ (v, y)

]
du

}
fj ,

F̃ is the distribution function of (Ũ1, Y1) and Ũ1 = F−1(X̃1).
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