Partial Differential Equations

Nonhomogeneous Neumann problems in Orlicz-Sobolev spaces

Mihai Mihăilescu ${ }^{\text {a,b }}$, Vicenţiu Rădulescu ${ }^{\text {c,a }}$
${ }^{\text {a }}$ University of Craiova, Department of Mathematics, Street A.I. Cuza No. 13, 200585 Craiova, Romania
b Department of Mathematics, Central European University, 1051 Budapest, Hungary
${ }^{\mathrm{c}}$ Institute of Mathematics "Simion Stoilow" of the Romanian Academy, P.O. Box 1-764, 014700 Bucharest, Romania

Received 31 January 2008; accepted 18 February 2008
Available online 24 March 2008
Presented by Philippe G. Ciarlet

Abstract

We establish sufficient conditions for the existence of nontrivial solutions for a class of nonlinear Neumann boundary value problems involving nonhomogeneous differential operators. To cite this article: M. Mihăilescu, V. Rădulescu, C. R. Acad. Sci. Paris, Ser. I 346 (2008).

© 2008 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Résumé

Problèmes de Neumann non homogènes dans les espaces d'Orlicz-Sobolev. On établit des conditions suffisantes pour l'existence des solutions non triviales pour une classe de problèmes aux limites de Neumann avec des opérateurs différentiels non homogènes. Pour citer cet article : M. Mihăilescu, V. Rădulescu, C. R. Acad. Sci. Paris, Ser. I 346 (2008).
© 2008 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Version française abrégée

Soit $\Omega \subset \mathbb{R}^{N}(N \geqslant 3)$ un domaine borné et régulier. On considère le problème non linéaire

$$
\begin{cases}-\operatorname{div}(a(x,|\nabla u(x)|) \nabla u(x))+a(x,|u(x)|) u(x)=\lambda g(x, u(x)), & \text { pour } x \in \Omega \tag{1}\\ \frac{\partial u}{\partial v}(x)=0, & \text { pour } x \in \partial \Omega\end{cases}
$$

où v est la normale extérieure à $\partial \Omega$. Soit $\phi(x, t)=a(x,|t|) t$ si $t \neq 0$ et $\phi(x, 0)=0$. On suppose qu'il existe deux constantes ϕ_{0} et ϕ^{0} telles que

$$
\begin{equation*}
1<\phi_{0} \leqslant \frac{t \phi(x, t)}{\Phi(x, t)} \leqslant \phi^{0}<\infty, \quad \forall x \in \bar{\Omega}, t \geqslant 0 \tag{2}
\end{equation*}
$$

De plus, on suppose que la fonction Φ satisfait

$$
M|t|^{p(x)} \leqslant \Phi(x, t), \quad \forall x \in \bar{\Omega}, t \geqslant 0
$$

[^0]où $p \in C(\bar{\Omega}), p(x)>1$ pour chaque $x \in \bar{\Omega}$ et $M>0$ est une constante. D'autre part, on suppose que la fonction g satisfait les conditions
$$
|g(x, t)| \leqslant C_{0}|t|^{q(x)-1}, \quad \forall x \in \Omega, t \in \mathbb{R},
$$
et
$$
C_{1}|t|^{q(x)} \leqslant G(x, t):=\int_{0}^{t} g(x, s) \mathrm{d} s \leqslant C_{2}|t|^{q(x)}, \quad \forall x \in \Omega, t \in \mathbb{R},
$$
où C_{0}, C_{1} et C_{2} sont des constantes positives et la fonction $q \in C(\bar{\Omega})$ satisfait $1<q(x)<\frac{N \min _{\bar{\Omega}} p}{N-\min _{\bar{\Omega}} p}$ pour tout $x \in \bar{\Omega}$. Le résultat principal de cette Note est le suivant :

Théorème 0.1.

(i) Si $\min _{\bar{\Omega}} q<\phi_{0}$ alors il existe $\lambda^{\star}>0$ tel que pour chaque $\lambda \in\left(0, \lambda^{\star}\right)$ le problème (1) admet une solution faible non triviale.
(ii) Si $\max _{\bar{\Omega}} q<\phi_{0}$ alors il existe $\lambda^{\star}>0$ et $\lambda^{\star \star}>0$ tels que pour chaque $\lambda \in\left(0, \lambda^{\star}\right) \cup\left(\lambda^{\star \star}, \infty\right)$ le problème (1) admet une solution faible non triviale.

1. The main result

Let $\Omega \subset \mathbb{R}^{N}(N \geqslant 3)$ be a bounded domain with smooth boundary. We consider the problem

$$
\begin{cases}-\operatorname{div}(a(x,|\nabla u(x)|) \nabla u(x))+a(x,|u(x)|) u(x)=\lambda g(x, u(x)), & \text { for } x \in \Omega \tag{3}\\ \frac{\partial u}{\partial v}(x)=0, & \text { for } x \in \partial \Omega\end{cases}
$$

where v is the outward unit normal to $\partial \Omega$. In the particular case when $a(x, t)=t^{p(x)-2}$, with p a continuous function on $\bar{\Omega}$, we deal with problems involving variable growth conditions. The study of such problems has been stimulated by recent advances in fluid dynamics (see [3,5,12,13]), image processing (see [1]) and calculus of variations and differential equations with $p(x)$-growth conditions (see [4-7]).

In this Note we assume that the function $a: \bar{\Omega} \times \mathbb{R} \rightarrow \mathbb{R}$ in (3) is such that the mapping $\phi: \bar{\Omega} \times \mathbb{R} \rightarrow \mathbb{R}, \phi(x, t)=$ $a(x,|t|) t$ if $t \neq 0$ and $\phi(x, 0)=0$ satisfies:
(ϕ) for all $x \in \Omega, \phi(x, \cdot): \mathbb{R} \rightarrow \mathbb{R}$ is an odd, increasing homeomorphism from \mathbb{R} onto \mathbb{R}; while the function $\Phi: \bar{\Omega} \times$ $\mathbb{R} \rightarrow \mathbb{R}, \Phi(x, t):=\int_{0}^{t} \phi(x, s) \mathrm{d} s$, for all $x \in \bar{\Omega}$ and all $t \geqslant 0$ belongs to class Φ (see [9], p. 33), that is, Φ satisfies the following conditions:
$\left(\Phi_{1}\right)$ for all $x \in \Omega, \Phi(x, \cdot):[0, \infty) \rightarrow \mathbb{R}$ is a nondecreasing continuous function, with $\Phi(x, 0)=0$ and $\Phi(x, t)>0$ whenever $t>0 ; \lim _{t \rightarrow \infty} \Phi(x, t)=\infty$;
$\left(\Phi_{2}\right)$ for every $t \geqslant 0, \Phi(\cdot, t): \Omega \rightarrow \mathbb{R}$ is a measurable function.
Remark 1. Since $\phi(x, \cdot)$ satisfies condition (ϕ) we deduce that $\Phi(x, \cdot)$ is convex and increasing from \mathbb{R}^{+}to \mathbb{R}^{+}.
For the function Φ introduced above we define the generalized Orlicz space $L^{\Phi}(\Omega)$ as the Banach space of all measurable functions $u: \Omega \rightarrow \mathbb{R}$ for which the Luxemburg norm

$$
|u|_{\Phi}=\inf \left\{\mu>0 ; \int_{\Omega} \Phi\left(x, \frac{|u(x)|}{\mu}\right) \mathrm{d} x \leqslant 1\right\},
$$

is finite.
In this Note we assume that there exist two positive constants ϕ_{0} and ϕ^{0} such that

$$
\begin{equation*}
1<\phi_{0} \leqslant \frac{t \phi(x, t)}{\Phi(x, t)} \leqslant \phi^{0}<\infty, \quad \forall x \in \bar{\Omega}, t \geqslant 0 . \tag{4}
\end{equation*}
$$

We point out that in the particular case when $\phi(x, t)=|t|^{p(x)-2} t$ with $p(x) \in C(\bar{\Omega})$ then we denote ϕ^{0} by $p^{+}:=$ $\max _{\bar{\Omega}} p$ and ϕ_{0} by $p^{-}:=\max _{\bar{\Omega}} p$.

Furthermore, we assume that Φ satisfies the following condition:
for each $x \in \bar{\Omega}$, the function $[0, \infty) \ni t \rightarrow \Phi(x, \sqrt{t})$ is convex.
Remark 2. Relation (5) assures that $L^{\Phi}(\Omega)$ is an uniformly convex space and thus, a reflexive space.
On the other hand, we point out that assuming that Φ and Ψ belong to class Φ and

$$
\begin{equation*}
\Psi(x, t) \leqslant K_{1} \cdot \Phi\left(x, K_{2} \cdot t\right)+h(x), \quad \forall x \in \bar{\Omega}, t \geqslant 0, \tag{6}
\end{equation*}
$$

where $h \in L^{1}(\Omega), h(x) \geqslant 0$ a.e. $x \in \Omega$ and K_{1}, K_{2} are positive constants, then by Theorem 8.5 in [9] we have that there exists the continuous embedding $L^{\Phi}(\Omega) \subset L^{\Psi}(\Omega)$.

Next, we build upon $L^{\Phi}(\Omega)$ the generalized Orlicz-Sobolev space $W^{1, \Phi}(\Omega)$ as the space of those weakly differentiable functions in Ω for which the weak derivatives belong to $L^{\Phi}(\Omega)$. This space endowed with the norm

$$
\|u\|=\inf \left\{\mu>0 ; \int_{\Omega}\left[\Phi\left(x, \frac{|u(x)|}{\mu}\right)+\Phi\left(x, \frac{|\nabla u(x)|}{\mu}\right)\right] \mathrm{d} x \leqslant 1\right\},
$$

is a reflexive Banach space. On $W^{1, \Phi}(\Omega)$ the following relations hold true:

$$
\begin{align*}
& \int_{\Omega}[\Phi(x,|u(x)|)+\Phi(x,|\nabla u(x)|)] \mathrm{d} x \geqslant\|u\|^{\phi_{0}}, \quad \forall u \in W^{1, \Phi}(\Omega) \text { with }\|u\|>1 ; \tag{7}\\
& \int_{\Omega}[\Phi(x,|u(x)|)+\Phi(x,|\nabla u(x)|)] \mathrm{d} x \geqslant\|u\|^{\phi^{0}}, \quad \forall u \in W^{1, \Phi}(\Omega) \text { with }\|u\|<1 . \tag{8}
\end{align*}
$$

We refer to Diening [2], Musielak [9], Musielak and Orlicz [10], Nakano [11] for further properties of generalized Orlicz-Sobolev spaces.

In this Note we study problem (3) in the particular case when Φ satisfies

$$
\begin{equation*}
M|t|^{p(x)} \leqslant \Phi(x, t), \quad \forall x \in \bar{\Omega}, t \geqslant 0 \tag{9}
\end{equation*}
$$

where $p(x) \in C(\bar{\Omega})$ with $p(x)>1$ for all $x \in \bar{\Omega}$ and $M>0$ is a constant.
Remark 3. By relation (9) we deduce that $W^{1, \Phi}(\Omega)$ is continuously embedded in $W^{1, p(x)}(\Omega)$ (see relation (6) with $\left.\Psi(x, t)=|t|^{p(x)}\right)$. On the other hand, it is known (see [5]) that $W^{1, p(x)}(\Omega)$ is compactly embedded in $L^{r(x)}(\Omega)$ for any $r(x) \in C(\bar{\Omega})$ with $1<r^{-} \leqslant r^{+}<\frac{N p^{-}}{N-p^{-}}$. Thus, we deduce that $W^{1, \Phi}(\Omega)$ is compactly embedded in $L^{r(x)}(\Omega)$ for any $r(x) \in C(\bar{\Omega})$ with $1<r(x)<\frac{N p^{-}}{N-p^{-}}$for all $x \in \bar{\Omega}$.

On the other hand, we assume that the function g from problem (3) satisfies the hypotheses

$$
\begin{equation*}
|g(x, t)| \leqslant C_{0}|t|^{q(x)-1}, \quad \forall x \in \Omega, t \in \mathbb{R} \tag{10}
\end{equation*}
$$

and

$$
\begin{equation*}
C_{1}|t|^{q(x)} \leqslant G(x, t):=\int_{0}^{t} g(x, s) \mathrm{d} s \leqslant C_{2}|t|^{q(x)}, \quad \forall x \in \Omega, t \in \mathbb{R} \tag{11}
\end{equation*}
$$

where C_{0}, C_{1} and C_{2} are positive constants and $q(x) \in C(\bar{\Omega})$ satisfies $1<q(x)<\frac{N p^{-}}{N-p^{-}}$for all $x \in \bar{\Omega}$.
Example. (a) First, we point out certain examples of functions g and G which satisfy hypotheses (10) and (11).
(1) $g(x, t)=q(x)|t|^{q(x)-2} t$ and $G(x, t)=|t|^{q(x)}$, where $q(x) \in C(\bar{\Omega})$ satisfies $2 \leqslant q(x)<\frac{N p^{-}}{N-p^{-}}$for all $x \in \bar{\Omega}$;
(2) $g(x, t)=q(x)|t|^{q(x)-2} t+(q(x)-2) \cdot\left[\log \left(1+t^{2}\right)\right]|t|^{q(x)-4} t+\frac{t}{1+t^{2}}|t|^{q(x)-2}$ and $G(x, t)=|t|^{q(x)}+\log (1+$ $\left.t^{2}\right) \cdot|t|^{q(x)-2}$, where $q(x) \in C(\bar{\Omega})$ satisfies $4 \leqslant q(x)<\frac{N p^{-}}{N-p^{-}}$for all $x \in \bar{\Omega}$.
(b) Second, we point out certain examples of functions $\phi(x, t)$ and $\Phi(x, t)$ for which the results of this paper can be applied.
(1) $\phi(x, t)=p(x)|t|^{p(x)-2} t$ and $\Phi(x, t)=|t|^{p(x)}$, with $p(x) \in C(\bar{\Omega})$ satisfying $2 \leqslant p(x)<N$, for all $x \in \bar{\Omega}$.
(2)

$$
\phi(x, t)=p(x) \frac{|t|^{p(x)-2} t}{\log (1+|t|)} \quad \text { and } \quad \Phi(x, t)=\frac{|t|^{p(x)}}{\log (1+|t|)}+\int_{0}^{|t|} \frac{s^{p(x)}}{(1+s)(\log (1+s))^{2}} \mathrm{~d} s
$$

with $p(x) \in C(\bar{\Omega})$ satisfying $3 \leqslant p(x)<N$, for all $x \in \bar{\Omega}$.
(3) $\phi(x, t)=p(x) \log (1+\alpha+|t|) \cdot|t|^{p(x)-1} t$ and

$$
\Phi(x, t)=\log (1+\alpha+|t|) \cdot|t|^{p(x)}-\int_{0}^{|t|} \frac{s^{p(x)}}{1+\alpha+s} \mathrm{~d} x
$$

where $\alpha>0$ is a constant and $p(x) \in C(\bar{\Omega})$ satisfying $2 \leqslant p(x)<N$, for all $x \in \bar{\Omega}$.
We say that $u \in W^{1, \Phi}(\Omega)$ is a weak solution of problem (3) if

$$
\int_{\Omega} a(x,|\nabla u|) \nabla u \nabla v \mathrm{~d} x+\int_{\Omega} a(x,|u|) u v \mathrm{~d} x-\lambda \int_{\Omega} g(x, u) v \mathrm{~d} x=0,
$$

for all $v \in W^{1, \Phi}(\Omega)$.
The main result of this Note is given by the following theorem:
Theorem 1.1. Assume ϕ and Φ verify conditions $(\phi),\left(\Phi_{1}\right),\left(\Phi_{2}\right),(4),(5)$ and (9) and the functions g and G satisfy conditions (10) and (11).
(i) If $q^{-}<\phi_{0}$ then there exists $\lambda_{\star}>0$ such that for any $\lambda \in\left(0, \lambda_{\star}\right)$ problem (3) has a nontrivial weak solution.
(ii) If $q^{+}<\phi_{0}$ then there exists $\lambda_{\star}>0$ and $\lambda^{\star}>0$ such that for any $\lambda \in\left(0, \lambda_{\star}\right) \cup\left(\lambda^{\star}, \infty\right)$ problem (3) has a nontrivial weak solution.

Let E denote the generalized Orlicz-Sobolev space $W^{1, \Phi}(\Omega)$.
For each $\lambda>0$ we define the energy functional $J_{\lambda}: E \rightarrow \mathbb{R}$ by

$$
J_{\lambda}(u)=\int_{\Omega}[\Phi(x,|\nabla u|)+\Phi(x,|u|)] \mathrm{d} x-\lambda \int_{\Omega} G(x, u) \mathrm{d} x, \quad \forall u \in E .
$$

Standard arguments imply that J_{λ} is well-defined on $E, J_{\lambda} \in C^{1}(E, \mathbb{R})$ and

$$
\left\langle J_{\lambda}^{\prime}(u), v\right\rangle=\int_{\Omega} a(x,|\nabla u|) \nabla u \cdot \nabla v \mathrm{~d} x+\int_{\Omega} a(x,|u|) u v \mathrm{~d} x-\lambda \int_{\Omega} g(x, u) v \mathrm{~d} x,
$$

for all $u, v \in E$. Thus, we remark that the weak solutions of Eq. (3) are exactly the critical points of the energy functional J_{λ}.

The following auxiliary results will be useful in order to establish the result of Theorem 1.1(i):
Lemma 1.2. Assume the hypotheses of Theorem 1.1(i) are fulfilled. Then there exists $\lambda_{\star}>0$ such that for any $\lambda \in\left(0, \lambda_{\star}\right)$ there exist $\rho, \alpha>0$ such that $J_{\lambda}(u) \geqslant \alpha>0$ for any $u \in E$ with $\|u\|=\rho$.

Lemma 1.3. Assume the hypotheses of Theorem 1.1(i) are fulfilled. Then there exists $\theta \in E$ such that $\theta \geqslant 0, \theta \neq 0$ and $J_{\lambda}(t \theta)<0$, for $t>0$ small enough.

Lemma 1.4. Assume that the sequence $\left\{u_{n}\right\}$ converges weakly to u in E and

$$
\limsup _{n \rightarrow \infty}\left\langle J_{\lambda}^{\prime}\left(u_{n}\right), u_{n}-u\right\rangle \leqslant 0
$$

Then $\left\{u_{n}\right\}$ converges strongly to u in E.
Proof of Theorem 1.1(i). Let $\lambda_{\star}>0$ be given by Lemma 1.2 and $\lambda \in\left(0, \lambda_{\star}\right)$. By Lemma 1.2 it follows that on the boundary of the ball centered in the origin and of radius ρ in E, denoted by $B_{\rho}(0)$, we have $\inf _{\partial B_{\rho}(0)} J_{\lambda}>0$.

On the other hand, by Lemma 1.3, there exists $\theta \in E$ such that $J_{\lambda}(t \theta)<0$ for all $t>0$ small enough. Moreover, relations (8) and (11) and the fact that E is continuously embedded in $L^{q(x)}(\Omega)$ imply that for any $u \in B_{\rho}(0)$ we have

$$
J_{\lambda}(u) \geqslant\|u\|^{\phi^{0}}-\lambda C_{2} c_{1}^{q^{-}}\|u\|^{q^{-}}
$$

where c_{1} is a positive constant. It follows that $-\infty<\underline{c}:=\inf _{\overline{B_{\rho}(0)}} J_{\lambda}<0$.
We let now $0<\epsilon<\inf _{\partial B_{\rho}(0)} J_{\lambda}-\inf _{B_{\rho}(0)} J_{\lambda}$. Applying Ekeland's variational principle to the functional $J_{\lambda}: \overline{B_{\rho}(0)} \rightarrow \mathbb{R}$, we find $u_{\epsilon} \in \overline{B_{\rho}(0)}$ such that

$$
J_{\lambda}\left(u_{\epsilon}\right)<\inf _{B_{\rho}(0)} J_{\lambda}+\epsilon \quad \text { and } \quad J_{\lambda}\left(u_{\epsilon}\right)<J_{\lambda}(u)+\epsilon\left\|u-u_{\epsilon}\right\|, \quad u \neq u_{\epsilon}
$$

Since

$$
J_{\lambda}\left(u_{\epsilon}\right) \leqslant \frac{\inf }{B_{\rho}(0)} J_{\lambda}+\epsilon \leqslant \inf _{B_{\rho}(0)} J_{\lambda}+\epsilon<\inf _{\partial B_{\rho}(0)} J_{\lambda}
$$

we deduce that $u_{\epsilon} \in B_{\rho}(0)$. Now, we define $I_{\lambda}: \overline{B_{\rho}(0)} \rightarrow \mathbb{R}$ by $I_{\lambda}(u)=J_{\lambda}(u)+\epsilon\left\|u-u_{\epsilon}\right\|$. It is clear that u_{ϵ} is a minimum point of I_{λ} and thus for small $t>0$ and any $v \in B_{1}(0)$ we have

$$
\frac{I_{\lambda}\left(u_{\epsilon}+t \cdot v\right)-I_{\lambda}\left(u_{\epsilon}\right)}{t} \geqslant 0 \quad \text { or } \quad \frac{J_{\lambda}\left(u_{\epsilon}+t \cdot v\right)-J_{\lambda}\left(u_{\epsilon}\right)}{t}+\epsilon\|v\| \geqslant 0
$$

Letting $t \rightarrow 0$ it follows that $\left\langle J_{\lambda}^{\prime}\left(u_{\epsilon}\right), v\right\rangle+\epsilon\|v\|>0$ and we infer that $\left\|J_{\lambda}^{\prime}\left(u_{\epsilon}\right)\right\| \leqslant \epsilon$.
We deduce that there exists a sequence $\left\{w_{n}\right\} \subset B_{\rho}(0)$ such that

$$
\begin{equation*}
J_{\lambda}\left(w_{n}\right) \rightarrow \underline{c} \quad \text { and } \quad J_{\lambda}^{\prime}\left(w_{n}\right) \rightarrow 0 \tag{12}
\end{equation*}
$$

It is clear that $\left\{w_{n}\right\}$ is bounded in E. Thus, there exists $w \in E$ such that, up to a subsequence, $\left\{w_{n}\right\}$ converges weakly to w in E. Using relation (12) we find

$$
\lim _{n \rightarrow \infty}\left\langle J_{\lambda}^{\prime}\left(w_{n}\right), w_{n}-w\right\rangle=0
$$

Thus, by Lemma 1.4, we deduce that $\left\{w_{n}\right\}$ converges strongly to w in E. So, by $(12), J_{\lambda}(w)=\underline{c}<0$ and $J_{\lambda}^{\prime}(w)=0$. We conclude that w is a nontrivial weak solution for problem (3) for any $\lambda \in\left(0, \lambda_{\star}\right)$. The proof of Theorem 1.1 (i) is complete.

Next, we prove Theorem 1.1(ii).
Proof of Theorem 1.1(ii). Since $q^{+}<\phi_{0}$ it follows that $q^{-}<\phi_{0}$ and thus, by Theorem 1.1(i) there exists $\lambda_{\star}>0$ such that for any $\lambda \in\left(0, \lambda_{\star}\right)$ problem (3) has a nontrivial weak solution.

On the other hand, we point out that J_{λ} is coercive and weakly lower semi-continuous in E, for all $\lambda>0$. Then Theorem 1.2 in [14] implies that there exists $u_{\lambda} \in E$ a global minimizer of I_{λ} and thus a weak solution of problem (3).

We show that u_{λ} is not trivial for λ large enough. Indeed, letting $t_{0}>1$ be a fixed real and $u_{0}(x)=t_{0}$, for all $x \in \Omega$ we have $u_{0} \in E$ and

$$
J_{\lambda}\left(u_{0}\right)=\Lambda\left(u_{0}\right)-\lambda \int_{\Omega} G\left(x, u_{0}\right) \mathrm{d} x \leqslant \int_{\Omega} \Phi\left(x, t_{0}\right) \mathrm{d} x-\lambda C_{1} \int_{\Omega}\left|t_{0}\right|^{q(x)} \mathrm{d} x \leqslant L-\lambda C_{1} t_{0}^{q^{+}}\left|\Omega_{1}\right|
$$

where L is a positive constant. Thus, there exists $\lambda^{\star}>0$ such that $J_{\lambda}\left(u_{0}\right)<0$ for any $\lambda \in\left[\lambda^{\star}, \infty\right)$. It follows that $J_{\lambda}\left(u_{\lambda}\right)<0$ for any $\lambda \geqslant \lambda^{\star}$ and thus u_{λ} is a nontrivial weak solution of problem (3) for λ large enough. The proof of Theorem 1.1(ii) is complete.

We refer to [8] for complete proofs and additional results.

Acknowledgements

The authors have been supported by Grant CNCSIS PNII-79/2007 "Procese Neliniare Degenerate şi Singulare". V. Rădulescu has been also supported by Grant 2-CEx06-11-18/2006.

References

[1] Y. Chen, S. Levine, M. Rao, Variable exponent, linear growth functionals in image processing, SIAM J. Appl. Math. 66 (4) (2006) $1383-1406$.
[2] L. Diening, Maximal function on Musielak-Orlicz spaces and generalized Lebesgue spaces, Bull. Sci. Math. 129 (2005) 657-700.
[3] T.C. Halsey, Electrorheological fluids, Science 258 (1992) 761-766.
[4] M. Mihăilescu, P. Pucci, V. Rădulescu, Nonhomogeneous boundary value problems in anisotropic Sobolev spaces, C. R. Acad. Sci. Paris, Ser. I 345 (2007) 561-566.
[5] M. Mihăilescu, V. Rădulescu, A multiplicity result for a nonlinear degenerate problem arising in the theory of electrorheological fluids, Proc. Roy. Soc. A: Math. Phys. Eng. Sci. 462 (2006) 2625-2641.
[6] M. Mihăilescu, V. Rădulescu, On a nonhomogeneous quasilinear eigenvalue problem in Sobolev spaces with variable exponent, Proc. Amer. Math. Soc. 135 (2007) 2929-2937.
[7] M. Mihăilescu, V. Rădulescu, Continuous spectrum for a class of nonhomogeneous differential operators, Manuscripta Math. 125 (2008) 157-167.
[8] M. Mihăilescu, V. Rădulescu, Neumann problems associated to nonhomogeneous differential operators in Orlicz-Sobolev spaces, Ann. Inst. Fourier, in press.
[9] J. Musielak, Orlicz Spaces and Modular Spaces, Lecture Notes in Mathematics, vol. 1034, Springer, Berlin, 1983.
[10] J. Musielak, W. Orlicz, On modular spaces, Studia Math. 18 (1959) 49-65.
[11] H. Nakano, Modulared Semi-ordered Linear Spaces, Maruzen Co., Ltd., Tokyo, 1950.
[12] K.R. Rajagopal, M. Ružička, Mathematical modelling of electrorheological fluids, Cont. Mech. Term. 13 (2001) 59-78.
[13] M. Ružička, Electrorheological Fluids Modeling and Mathematical Theory, Springer-Verlag, Berlin, 2002.
[14] M. Struwe, Variational Methods: Applications to Nonlinear Partial Differential Equations and Hamiltonian Systems, Springer-Verlag, Heidelberg, 1996.

[^0]: E-mail addresses: mmihailes@yahoo.com (M. Mihăilescu), vicentiu.radulescu@math.cnrs.fr (V. Rădulescu).
 URLs: http://www.inf.ucv.ro/~mihailescu (M. Mihăilescu), http://www.inf.ucv.ro/~radulescu (V. Rădulescu).

