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Abstract

We find explicitly the Bellman function for the dyadic maximal operator on Lp as the solution of a Bellman partial differential
equation of Monge–Ampère type. This function has been previously found by A. Melas (2005) in a different way, but it is our
partial differential equation-based approach that is of principal interest here. Clear and replicable, it holds promise as a unifying
template for past and current Bellman function investigations. To cite this article: L. Slavin et al., C. R. Acad. Sci. Paris, Ser. I
346 (2008).
© 2008 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Résumé

Équations de Monge–Ampère et fonctions de Bellman : l’opérateur maximal dyadique. Nous construisons explicitement la
fonction de Bellman pour l’opérateur maximal dyadique sur Lp comme solution d’une équation aux dérivées partielles de Bellman
de type Monge–Ampère. La fonction a été introduite par A. Melas (2005) sous un angle différent, mais ici nous privilégions notre
approche à partir d’une équation aux dérivées partielles. Claire et reproductible, cette approche peut servir de principe unificateur
dans les investigations passées et actuelles concernant les fonctions de Bellman. Pour citer cet article : L. Slavin et al., C. R. Acad.
Sci. Paris, Ser. I 346 (2008).
© 2008 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.
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1. Introduction

For a locally integrable function g on R
n and a set E ⊂ R

n with |E| �= 0, let 〈g〉E = 1
|E|

∫
E

g be the average of g

over E. Let p > 1 and q > 1 be conjugate exponents, i.e. p−1 + q−1 = 1. Let ϕ be a nonnegative locally Lp-function
on R

n. Fix a dyadic lattice D on R
n and consider the dyadic maximal operator:

Mϕ(x) = sup
I�x; I∈D

〈ϕ〉I .

Following F. Nazarov and S. Treil [2], we define the Bellman function for Mϕ,

B(f,F,L) = sup
0�ϕ∈L

p
loc(R

n)

{〈
(Mϕ)p

〉
Q

: 〈ϕ〉Q = f ; 〈
ϕp

〉
Q

= F ; sup
R⊃Q

〈ϕ〉R = L
}
. (1)

Observe that B is independent of Q and well-defined on the domain: Ω = {(f,F,L): 0 < f � L; f p � F }. Finding
B will, among other things, provide a sharp refinement of the Hardy–Littlewood–Doob maximal inequality

‖Mϕ‖p � q‖ϕ‖p. (2)

In [2], the authors show that B(f,F,L) � qpF − pqf Lp−1 + pLp , which implies (2). A. Melas in [1], using deep
combinatorial properties of the operator M and without relying on the Bellman PDE, finds B explicitly. In contrast, we
develop a boundary value problem of Monge–Ampère type that B must satisfy (assuming sufficient differentiability)
and solve it, producing the function from [1]. Our approach has been used as the foundation of several recent Bellman
function results. We first restrict our attention to the one-dimensional case and then show that the Bellman function
does not depend on dimension.

2. Finite-differential and differential properties of B

Let Q be an interval and Q−,Q+ its left and right halves, respectively. Let (f±,F±) = (fQ± ,FQ±), (f,F ) =
((f−,F−) + (f+,F+))/2. Taking suprema in the identity〈

(Mϕ)p
〉
Q

= 1

2

〈
(Mϕ)p

〉
Q− + 1

2

〈
(Mϕ)p

〉
Q+ ,

over all ϕ with appropriate averages, we obtain:

B(f,F,L) � 1

2
B

(
f−,F−,max{f−,L}) + 1

2
B

(
f+,F+,max{f+,L}). (3)

Any function B satisfying this pseudo-concavity property on Ω will be a majorant of the true Bellman function. The
following theorem phrases this condition in a differential form:

Theorem 2.1. Let z = (f,F ). Assuming sufficient smoothness on the Bellman function B , condition (3) holds for all
admissible triples if and only if :

det

(
∂2B

∂z2

)
= 0, Bff � 0, BL � 0 on Ω; 2Bf L + BLL � 0, BL = 0 when f = L. (4)

3. Homogeneity, boundary value problem, solution

We reduce the order of the PDE in (4) by using the multiplicative homogeneity of B: B(f,F,L) = LpB(f/L,

F/Lp,1)
def= LpG(x, y), where x = f/L,y = F/Lp . In addition, F = f p only for functions that are constant on Q,

so B(f,f p,L) = Lp , meaning G(x,xp) = 1. Coupling this with the first and the last conditions in (4), we get a
boundary value problem for G on the domain {(x, y) | 0 < x � 1; xp � y}:

GxxGyy = G2
xy; G(x,xp) = 1; pG(1, y) = Gx(1, y) + pyGy(1, y). (5)

We look for the solution of the Monge–Ampère equation (5) in the general parametric form:

G(x,y) = tx + f (t)y + g(t); x + f ′(t)y + g′(t) = 0. (6)
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Fix a value of t , i.e. fix one of the straight-line trajectories in (6). Let (u(t), up(t)) be the point where that trajectory
intersects the lower boundary y = xp . We have:

G(u,up) = tu(t) + f (t)up(t) + g(t) = 1; u(t) + f ′(t)up(t) + g′(t) = 0.

Differentiating the first equation and using the second one, we get, after some algebra, f = −t/(pup−1), g = 1− tu/q .
Assume now that the trajectory intersects the right boundary x = 1 at the point (1, v(t)). Then G(1, v) = t + f v + g.
On the other hand, parametrization (6) implies Gx = t , Gy = f (t) and so the second boundary condition in (5)
becomes G(1, v) = t

p
+ f v. This gives g = −t/q , allowing us to express t = q/(u − 1). Simplifying, we obtain a

complete solution of the form (6):

G(x,y) = y

up
; x − qu − 1

qup
y − 1

q
= 0. (7)

In terms of the original variables, we get a Bellman function candidate near the boundary f = L:

B(f,F,L) = Fu−p(f/L,F/Lp). (8)

4. From the candidate to the true function

4.1. Condition B � B

One can readily verify that the rest of conditions (4) are satisfied by the candidate (8). Therefore, property (3) holds
and one can perform the Bellman induction: take any nonnegative function ϕ ∈ L

p

loc(R
n) and an interval Q0 ∈ D. For

an interval Q ⊂ Q0,Q ∈ D, let XQ = (fQ,FQ,LQ) with f , F , and L defined as in (1). Then

B(fQ0 ,FQ0,LQ0) � 1

2
B(X(Q0)−) + 1

2
B(X(Q0)+)

� 1

|Q0|
∑

Q⊂Q0, |Q|=2−n|Q0|
|Q|B(XQ) � 1

|Q0|
∑

Q⊂Q0, |Q|=2−n|Q0|
|Q|Lp

Q

= 1

|Q0|
∑

Q⊂Q0, |Q|=2−n|Q0|
|Q|

(
sup
R⊃Q

〈ϕ〉R
)p −→ 〈

(Mϕ)p
〉
Q0

, as n → ∞. (9)

Here we have used that B � Lp . Taking supremum on the right over all ϕ with the above XQ0 we get B � B .

4.2. Condition B � B

To get the reverse inequality, we need to construct, for every point (f,F,L) ∈ Ω , a sequence of nonnegative
functions on (0,1), {ϕn}, so that

lim
n→∞

〈
(Mϕn)

p
〉
(0,1)

� B(f,F,L).

To do this, we use the trajectories t = const of the Monge–Ampère equation from Section 3. In the original variables,
this gives:

f = L

q
+ AF. (10)

On the boundary f = L going along these trajectories yields the extremal sequence

ϕn(t) =
⎧⎨
⎩

αnL, 0 < t < 2−n,

ϕn(2kt − 1), 2−k < t < 2−k+1, k = 2, . . . , n,

βnϕn(2t − 1), 1
2 < t < 1.

(11)

The definition is understood recursively, whereby the function is defined on a portion of (0,1), then on the same
portion of the remaining part, and so on. The numbers αn and βn are chosen so that 〈ϕn〉(0,1) = L and 〈ϕp

n 〉(0,1) = F .
This means

1
n
αn + 1

βn = 1
n

+ 1 ; 1
n
α

p
n + 1

β
p
n

F

p
=

(
1
n

+ 1
)

F

p
.

2 2 2 2 2 2 L 2 2 L
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One can show that αnMϕn � ϕn and αn → u(1,F/Lp) with u defined by (7). Therefore,

lim
n→∞

〈
(Mϕn)

p
〉
(0,1)

� lim
n→∞

1

α
p
n

〈
ϕ

p
n

〉
(0,1)

= lim
n→∞

F

α
p
n

= Fu−p(1,F/Lp) = B(L,F,L),

which gives B(L,F,L) � B(L,F,L).
On the boundary F = f p the situation is simple: here the only test functions are constants and so B(f,f p,L) =

B(f,f p,L) = Lp . Having constructed the extremal sequences on the two boundaries, we get the extremal sequence
at any point (f,F,L) with f > L/q as their weighted dyadic rearrangement built along the unique extremal trajectory
of the form (10) passing through the point.

One observes, however, that trajectories (10) cannot be used with A < 0, since they then would intersect the
“forbidden” boundary f = 0. (It is forbidden because, for a nonnegative function, f = 0 implies F = 0.) In fact, in
the region 0 < f < L/q , no trajectory can lean either to the left or to the right (the forbidden boundary to the left,
the existing extremal trajectory f = L/q to the right). We conclude two things: the trajectories are vertical in this
region and the candidate (8) no longer works there. However, this is quickly rectified: If G(x,y) = a(x)y +b(x), then
G(x,xp) = 1 implies that G(x,y) = 1 + a(x)(y − xp). Now GxxGyy −G2

xy = −(a′(x))2 = 0, and G(1/q, y) = qpy

implies that a(x) = qp . Thus we get the unique two-piece Bellman function candidate:

B(f,F,L) =
{

Fu−p(f/L,F/Lp), L < qf,

Lp + qp(F − f p), L � qf.
(12)

(In the notation of [1], u−p(x, y) = ωp((px −p + 1)/y)p .) This B still satisfies (3). Therefore, Bellman induction (9)
works. We now need an extremal sequence proving that B � B in the region L � qf . There is a unique extremal
trajectory passing through each point of the region. However, the trajectory is vertical and so intersects the boundary
of Ω at a single point; as a result we cannot use a weighted average of boundary extremal sequences like we just did
for the region L > f/q . We deal with it by tilting the trajectory slightly to the right, which produces a (distant) second
boundary point, at the boundary f = L. This lets us use the extremal sequence ϕn from (11), while simultaneously
reducing the tilt. Namely, fix (f,F,L) and k � 1. Define γk and Fk so that L − γk = 2k(f − γk) and Fk − γ

p
k =

2k(F − γ
p
k ). (Observe that γk → f and Fk → ∞.) Using (11), form a sequence {ϕk,n}∞n=1 with 〈ϕk,n〉(0,1) = L and

〈ϕp
k,n〉(0,1) = Fk , so that 〈(Mϕk,n)

p〉(0,1) → B(L,Fk,L), as n → ∞. Let,

ψk,n(t) =
⎧⎨
⎩

ϕk,n(2kt), 0 < t < 2−k,

γk, 2−k < t < 1,

2L − f, 1 < t < 2.

Direct computation shows that 〈ψk,n〉(0,1) = f , 〈ψp
k,n〉(0,1) = F , and 〈ψk,n〉(0,2) = L. Then〈

(Mψk,n)
p
〉
(0,1)

� Lp(1 − 2−k) + 2−k
〈
(Mϕk,n)

p
〉
(0,1) n→∞−−−−→ Lp(1 − 2−k) + 2−kB(L,Fk,L)

k→∞−−−→ Lp + (F − f p)u−p(1,∞) = Lp + qp(F − f p).

5. Several dimensions

It turns out that the Bellman function (1), (12) is dimension-free. Fix a dyadic cube Q and let Q1, . . . ,Q2n be its
dyadic offspring. Then

B

(
2−n

2n∑
k=1

zk,L

)
� 2−n

n∑
k=1

B
(
zk,max{fk,L}).

Therefore, we can run the induction (9) to prove that B � B . The other direction is shown by a trivial modification of
the one-dimensional maximizing sequences. A similar argument can be used to show that the same Bellman function
works for the maximal operator on trees, the setting of choice in [1].
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