
C. R. Acad. Sci. Paris, Ser. I 346 (2008) 527–532
http://france.elsevier.com/direct/CRASS1/

Partial Differential Equations

Gradient and Hölder estimates for positive solutions
of Pucci type equations

Italo Capuzzo Dolcetta a, Antonio Vitolo b

a Dipartimento di Matematica, Università di Roma “La Sapienza”, P.le A. Moro 2, 00185 Roma, Italy
b Dipartimento di Matematica e Informatica, Università di Salerno, P. Grahamstown, 84084 Fisciano (SA), Italy

Received 29 November 2007; accepted 28 February 2008

Available online 21 April 2008

Presented by Louis Nirenberg

Abstract

We present some estimates for positive viscosity solutions of a class of fully non-linear elliptic equations including the extremal
Pucci equations, generalizing some results for linear equations recently established by Y.Y. Li and L. Nirenberg. To cite this article:
I. Capuzzo Dolcetta, A. Vitolo, C. R. Acad. Sci. Paris, Ser. I 346 (2008).
© 2008 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Résumé

Estimations Hölder et du gradient pour les solutions non négatives des équations de Pucci. Le but de cette Note est de
donner des estimations pour les solutions de viscosité non négatives d’une classe d’équations complètement non linéaires compre-
nante les équations extrémales de Pucci, en généralisant ainsi des résultats récents dues à Y.Y. Li et L. Nirenberg. Pour citer cet
article : I. Capuzzo Dolcetta, A. Vitolo, C. R. Acad. Sci. Paris, Ser. I 346 (2008).
© 2008 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Version française abrégée

Le but de cette Note est d’établir des estimations du gradient et de type Hölder pour les solutions de viscosité non
négatives d’une classe d’équations elliptiques complètement non linéaires de la forme F(D2u) = f dans une boule
BR(x0) de R

n. Les recherches qu’on présente ici sont motivés par un article récent de Y.Y. Li et L. Nirenberg. La
classe des équations considérées inclut en particulier les équations extremales de Pucci

P+
λ,Λ(D2u) = sup

A∈Aλ,Λ

Tr(AD2u) = f et P−
λ,Λ(D2u) = inf

A∈Aλ,Λ

Tr(AD2u) = f.

Nos résultats peuvent donc être regardés comme des généralisations de ceux dans [8]. Un premier résultat est la
validité des inégalités de Glaeser
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où M = supBR(x0)
|f |, dans tout point x de différentiabilité de la solution u � 0 de F(D2u) = f , pourvu que F

satisfasse une certaine propriété d’invariance par réflexion, voir Lemma 1.1 et Proposition 1.1.
En ce qui concerne les estimations Hölderiennes, on démontre que toute solution de viscosité non négative de

l’équation F(D2u) = f avec ‖f ‖Ln(BR(x0)) � M vérifie

sup
x,y∈BR(x0)

x �=y

|u(x) − u(y)|
|x − y|α � C

(
u(x0)

Rα
+ MR1−α

)
,

avec α ∈ (0,1) et C > 0 dépendantes de n,λ,Λ.
Les démonstrations reposent sur des techniques de comparaison, voir le Lemma 1.1, et sur la version, voir [3], de

l’inégalité de Harnack

sup
B 3

4 r
(x)

u � C2

(
inf

B 3
4 r

(x)
u + r‖f ‖Ln(Br (x))

)

pour les solutions de viscosité non négatives de F(D2u) = f .

1. Introduction and results

A well-known estimate for classical solutions u ∈ C2(Bd) ∩ C0(B̄d) of the Poisson’s equation �u = f in the ball
Bd = {x =∈ R

n | |x| < d} is

∣∣Du(0)
∣∣ � n

√
2

d
sup
Bd

|u| + d

2
√

2
sup
Bd

|f |, (1)

where Du is the gradient of u, see [6]. In a recent paper, combining estimates of this kind with the Harnack inequal-
ity, Y.Y. Li and L. Nirenberg [8] obtained for non-negative solutions u ∈ C2(BR(x0)) of the Poisson’s equation an
extension of Glaeser’s one-dimensional inequality. Their result is that, for M = supBR(x0)

|f |, the following estimates
hold:
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for some positive constant C = C(n).
Our aim here is to extend the validity of the above inequalities, as well as of (1), to non-negative generalized

solutions in the viscosity sense, see [4], of the fully non-linear equation

F
(
D2u(x)

) = f (x) (2)

where D2u denotes the Hessian matrix of u. The leading requirements we make on F are uniform ellipticity and a
reflection invariance property. For clarity of exposition we will also assume F(0) = 0. By uniform ellipticity, we mean
that, for some constants 0 < λ � Λ,

λTr(Y ) � F(X + Y) − F(X) � ΛTr(Y )

for X,Y ∈ Sn with Y � 0, where Sn and Tr denote, respectively, the space of real symmetric n × n matrices endowed
with the partial ordering induced by non-negative definiteness and the trace of such a matrix. Note that (2) reduces to
the Poisson’s equation for F(X) = Tr(X).

The mapping F is reflection invariant with respect to a hyperspace H if

F(X) = F(RXR) for all X ∈ Sn

where R ∈ Sn be the reflection matrix with respect to H . Inequality (1) can be extended to our setting as follows:

Lemma 1.1. Let u ∈ C0(Bd) be a viscosity solution of (2). Suppose that F is uniformly elliptic and is invariant by
reflection with respect to n orthogonal hyperspaces H1, . . . ,Hn. If u is differentiable at x = 0, then

max
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∣∣uxi
(0)

∣∣ � n

d

√
λ + Λ

λ
sup
Bd

|u| + d

2

1√
λ(λ + Λ)

sup
Bd

|f |. (3)
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If F depends on matrix X only through its eigenvalues, then any unit vector defines an invariant by reflection
hyperplane for F . In this case, maxi |uxi

(0)| = |Du(0)| in Eq. (3) while in general maxi |uxi
(0)| � |Du(0)|√

n
. Combining

the result of Lemma 1.1 with the Harnack inequality for non-negative viscosity solutions of (2), see [3], we deduce:

Proposition 1.1. Let F be as in Lemma 1.1 and assume moreover that F(0) = 0. If u is a non-negative viscosity
solution of Eq. (2) in the ball BR(x0) with f ∈ C0(BR(x0)) and |f | � M in BR(x0), then the estimates

∣∣Du(x)
∣∣ � C

√
u(x0)M if 2|x| �

√
u(x0)

M
� R, (4)

∣∣Du(x)
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(
u(x0)

R
+ MR

)
if 2|x| � R �

√
u(x0)

M
(5)

hold at any differentiability point x ∈ BR/2(x0), for some constant C depending on n,λ,Λ.

A result due to Ishii–Lions, see [7] Theorem 7.2, applies in our setting guaranteeing the Lipschitz continuity of
viscosity solutions of (2); hence, by the Rademacher Theorem, the estimates (4), (5) hold in fact almost everywhere
in BR/2(x0). Concerning Hölder estimates, we have the following extension of a linear result in [8]:

Proposition 1.2. Assume that F is uniformly elliptic with F(0) = 0. If u ∈ C0(BR(x0)) is a non-negative viscosity
solution of (2) and ‖f ‖Ln(BR(x0)) � M , then

sup
x,y∈BR(x0)

x �=y

|u(x) − u(y)|
|x − y|α � C

(
u(x0)

Rα
+ MR1−α

)
, (6)

for some positive constants α ∈ (0,1) and C depending on n,λ,Λ.

The proofs of Lemma 1.1 and of Propositions 1.1, 1.2 are outlined in Section 2.
We conclude this section with a few examples of equations fitting in our framework. We denote by Aλ,Λ denotes

the closed convex set in Sn consisting of positive definite matrices whose eigenvalues belong to the interval [λ,Λ],
λ > 0. The Pucci extremal equations

P+
λ,Λ(D2u) = sup

A∈Aλ,Λ

Tr(AD2u) = f and P−
λ,Λ(D2u) = inf

A∈Aλ,Λ

Tr(AD2u) = f

are basic models of fully non-linear equations satisfying our leading assumptions. Using the alternative representation,
see [3],

P+
λ,Λ(X) = ΛTr(X+) − λTr(X−), P−

λ,Λ(X) = λTr(X+) − ΛTr(X−),

where X± are non-negative definite matrices such that X = X+ − X−,X+X− = 0, it is easy to check that P±
λ,Λ are

invariant by reflection with respect to any orthogonal set of hyperspaces. In the sequel we will make use of the fact
that Pucci operators are positively homogeneous of degree 1 and also of the inequalities

P±
λ,Λ(X) + P−

λ,Λ(Y ) � P±
λ,Λ(X + Y) � P+

λ,Λ(X) + P±
λ,Λ(Y ).

Note that the above inequalities imply in particular that P±
λ,Λ are uniformly elliptic with ellipticity constants λ and Λ.

More generally, reflection invariance holds for any F depending only on the eigenvalues of X, since such an F is not
changed by the action OT XO of orthogonal matrices O . Linear equations of the form Tr(AD2u) = f with A ∈ Aλ,Λ

are of course a special subcase.
The Bellman equations in stochastic optimal control,

inf
k∈K

Tr(AkD
2u) = f

with Ak ∈ Aλ,Λ, k ∈ K , fit in our framework provided that Ak commutes with Aj for each k, j ∈ K . If so, then one can
find ξ1, . . . , ξn in R

n forming a common orthonormal set of eigenvectors for all matrices Ak ; therefore infk∈K Tr(AkX)

is invariant by reflection with respect to the hyperspaces of equations ξ1 · x = 0, . . . , ξn · x = 0. Similar arguments can
be applied to discuss the more general case of Isaacs equations supj∈K infk∈K Tr(Ak,jD

2u) = f.
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2. Proofs

If F is invariant by reflection with respect to a set of orthogonal hyperspaces H1, . . . ,Hn, then the reflection matri-
ces are of the form Ri = OT R∗

i O where O is an orthogonal matrix and R∗
i , i = 1, . . . , n, are the reflection matrices

with respect to the hyperspaces x1 = 0, . . . , xn = 0. This implies that the mapping G(X) = F(OT XO) is invariant
by reflection with respect to x1 = 0, . . . , xn = 0, as it follows by the identities G(R∗

i XR∗
i ) = F(OT R∗

i XR∗
i O) =

F(RiO
T XORi) = F(OT XO) = G(X).

Clearly, if F is uniformly elliptic, the same is true for G. Observe also that if u is a smooth solution of (2), then
v(y) = u(OT x) satisfies G(D2v(y)) = g(y) where g(y) = f (OT y), since D2u(x) = OT D2v(y)O . It is not difficult
to check that the same holds true for viscosity solutions of (2).

Proof of Lemma 1.1. In view of the previous discussion, we may assume that F is invariant by reflection with respect
to the cohordinate hyperspaces of equations x1 = 0, . . . , xn = 0. Set d̄ = d√

Λ+λ
so that the open cylinder

K = Kd̄ = {
x = (x′, xn) ∈ R

n−1 × R | |x′| < d̄
√

Λ, |xn| < d̄
√

λ
}

is contained in Bd . In order to prove the estimate (3) we can suppose that u is continuous up to the boundary, otherwise
we carry out the calculations below in the smaller cylinder K(1−ε)d and then let ε → 0+. Denote by K ′ the upper half-
cylinder K ′ = {x ∈ K: xn > 0} and by u∗ the function u∗(x′, xn) = u(x∗), where x∗ = (x′,−xn). If u is a smooth
solution of (2), then D2u∗(x) = R∗

nD2u(x∗)R∗
n . Hence, the reflection invariance of F with respect xn = 0 yields

F(D2u∗)(x) = f ∗(x), x ∈ K ′, (7)

where f ∗(x) = f (x∗). It is not hard to check that the same conclusion holds for viscosity solutions. Setting M =
supK |f |, from Eqs. (2) and (7) we deduce that

−M � F(D2u) � M, −M � F(D2u∗) � M

in the viscosity sense. Consider now the function

ũ(x) = 1

2

(
u(x) − u∗(x)

) = 1

2

(
u(x′, xn) − u(x′,−xn)

)
, x ∈ K ′.

A slight modification of Theorem 5.3 in [3] allows one to conclude that

−M � P+
λ,Λ(D2ũ), P−

λ,Λ(D2ũ) � M (8)

in K ′, in the viscosity sense. Define next, for x ∈ K ′ the smooth comparison function

Φ(x) = N

d̄2

[ |x′|2
Λ

+ xn√
λ

(
nd̄ − (n − 1)

xn√
λ

)]
+ M

2

xn√
λ

(
d̄ − xn√

λ

)

where N = supK |u|. A direct computation shows that

P+
λ,Λ(D2Φ) = Λ

2N

Λd̄2
(n − 1) − λ

(
2N

λd̄2
(n − 1) + M

λ

)
= −M.

Using this fact, the inequalities (8) and Lemma 2.12 in [3], we deduce, since Φ is smooth, that

P+
λ,Λ

(
D2(ũ − Φ)

)
� 0 � P−

λ,Λ

(
D2(ũ + Φ)

)
in K ′.

Since ũ − Φ � 0 � ũ + Φ on ∂K ′, then by the weak Maximum Principle, ũ − Φ � 0 � ũ + Φ for all x ∈ K ′. Take
now x′ = 0 in the above and divide by xn > 0 to get

|u(0, xn) − u(0,−xn)|
2xn

� N

d̄2

(
nd̄ − (n − 1)

xn√
λ

)
+ M

2
√

λ

(
d̄ − xn√

λ

)
.

Letting xn → 0+ we obtain

∣∣uxn(0)
∣∣ � n

¯ sup |u| + d̄√ sup |f |. �

d K 2 λ K



I. Capuzzo Dolcetta, A. Vitolo / C. R. Acad. Sci. Paris, Ser. I 346 (2008) 527–532 531
We need next the Harnack inequality, see Theorem 4.3 of [3], for continuous viscosity solutions u � 0 of Eq. (2)
in Br(x):

sup
B 3

4 r
(x)

u � C2

(
inf

B 3
4 r

(x)
u + r‖f ‖Ln(Br (x))

)
. (9)

Proof of Proposition 1.1. By the Lipschitz regularity Theorem 7.2 of [7], any continuous viscosity solution u of (2)
is differentiable a.e. in BR(x0). Let 0 < r < R and x ∈ Br

2
(x0); take then d = 1

4 r , so that Bd(x) ⊂ B 3
4 r

(x0). By
translational invariance we can use inequality (3) and then the Harnack inequality to get

∣∣Du(x)
∣∣ � C1

(
supBd(x) u

r
+ Mr

)
� C1

(
C2

u(x0) + Mr2

r
+ Mr

)
.

It easily follows that |Du(x)| � C(
u(x0)

r
+ Mr) at those x ∈ BR(x0) where u is differentiable.

At this point, the inequalities (4) and (5) are derived arguing as in the proof of Proposition 2 of [8]. �
Proof of Proposition 1.2. If u ∈ C0(BR(x0)) is a viscosity solution of Eq. (2), then the uniform ellipticity of F yields
the Cα-estimate

Rα sup
x,y∈BR(x0)

x �=y

|u(x) − u(y)|
|x − y|α � C

(
sup

B 3
4 R

(x0)

|u| + R‖f ‖Ln(BR(x0))

)
(10)

which is in fact a rescaled version of the Hölder estimate stated in [3], Proposition 4.10(2). Combined with the Harnack
inequality (9), estimate (10) gives the result. �
3. Further remarks

Assuming, instead of our reflection invariance condition, that the following condition holds:
there exist positive constants ᾱ < 1 and C̄ such that all solutions w of the homogeneous equation F(D2w) = 0

in Bd , satisfy the a priori estimate

‖w‖C1,ᾱ (B r
2
(x)) � C̄r−(1+ᾱ)‖w‖L∞(Br (x)), 0 < r � d (11)

at x = 0, then a qualitative version of inequality (3), namely
∣∣Du(0)

∣∣ � C1

(
supBd

|u|
d

+ d sup
Bd

|f |
)

, (12)

for some constant C1, could be derived indeed from Theorem 2 in Caffarelli [2]. Note that (12) would be enough for
the validity of Proposition 1.1. Note also that such an alternative approach based on assumption (11) allows one also
to prove a C1,α regularity result for viscosity solutions of Eq. (2):

Proposition 3.1. Let F be a uniform elliptic operator such that F(0) = 0 and |f | � M in BR(x0). Assume moreover
that (11) holds for all x ∈ BR(x0). If u is a non-negative viscosity solution of (2) in BR(x0), then u ∈ C1,α(BR(x0))

for every 0 < α < ᾱ and the estimates (4), (5) hold in BR/2(x0) with C depending on n,λ,Λ and ᾱ.

The proof of Proposition 3.1 is similar to that of Proposition 1.1 but is based on Theorem 2 of [2], which yields
C1,α- regularity and inequality (12), rather than on Theorem 7.2 of [7].

Note that condition (11) holds for convex equations thanks to the C2,α-estimates in [5], and also for the case where
F = inf(F1,F2) with F1 convex and F2 concave, see Corollary 1.3(i) in [1].

We also point out that, if u ∈ C2(BR) is solution of (2) with F smooth and F(0) = 0, then u solves a linear equation
with continuous coefficients aij (x) = ∫ 1

0
∂F

∂Xij
(tD2u(x))dt . Then from Proposition 5 of [8] we get:

Proposition 3.2. Let u ∈ C2(BR(x0)) be a non-negative solution of (2) with F uniformly elliptic and smooth, such
that F(0) = 0. If |f (x)| � M in BR(x0), then inequalities (4) and (5) hold in BR/2(x0) with C depending on n,λ,Λ

and the modulus of continuity of the aij ’s defined above.
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