Dynamical Systems

No finite invariant density for Misiurewicz exponential maps ${ }^{\text {s }}$

Janina Kotus ${ }^{\text {a }}$, Grzegorz Świa̧tek ${ }^{\text {a,b }}$
${ }^{\text {a }}$ Faculty of Mathematics and Information Science, Warsaw University of Technology, 00-661 Warsaw, Poland
${ }^{\text {b }}$ Department of Mathematics, Penn State University, University Park, PA 16802, USA

Received 20 December 2007; accepted after revision 7 March 2008

Presented by Étienne Ghys

Abstract

For exponential mappings such that the orbit of the only singular value 0 is bounded, it is shown that no integrable density invariant under the dynamics exists on \mathbb{C}. To cite this article: J. Kotus, G. Świagtek, C. R. Acad. Sci. Paris, Ser. I 346 (2008). © 2008 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Résumé

Il n'existe aucune densité intégrable pour des applications exponentielles de Misiurewic. Pour les applications exponentielles de \mathbb{C} dont l'orbite de la valeur singulière 0 est bornée, on montre qu'il n'existe aucune densité intégrable et invariante sous la dynamique. Pour citer cet article : J. Kotus, G. Świątek, C. R. Acad. Sci. Paris, Ser. I 346 (2008).
© 2008 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

We consider one parameter family of exponential functions $f_{\Lambda}(z)=\Lambda \mathrm{e}^{z}, z \in \mathbb{C}, \Lambda \in \mathbb{C}^{*}$. These maps have only one finite singular value 0 whose forward trajectory determines the dynamics on \mathbb{C}. From now we assume that the orbit of the asymptotic value 0 is bounded and the Julia set $J\left(f_{\Lambda}\right)=\mathbb{C}$. Thus f satisfies so called Misiurewicz condition i.e. the post-singular set $P(f):=\bigcup_{n=0}^{\infty} f_{\Lambda}^{n}(0)$ is bounded and $P(f) \cap \operatorname{Crit}(f)=\emptyset$. It follows from [4, Th. 1] that $P(f)$ is hyperbolic. The problem of existence of probabilistic invariant measure absolutely continuous with respect to the Lebesgue measure (abbr. pacim) for transcendental meromorphic functions satisfying Misiurewicz condition was discussed in [6]. However, this result cannot be applied to entire functions. The main result of this Note is the following theorem:

Theorem 1. Let $f(z)=\Lambda \exp (z)$ with $\Lambda \in \mathbb{C} \backslash\{0\}$ chosen so that the Julia set is the entire sphere and the orbit of 0 under f is bounded. Then f admits no probabilistic invariant measure absolutely continuous with respect to the Lebesgue measure.

[^0]However these maps have σ-finite invariant measure absolutely continuous with respect to the Lebesgue measure (see [5]). A result similar to Theorem 1 has been mentioned to us by other authors, [2].

The proof will proceed by contradiction, so we suppose that such a measure exists and call it μ, while reserving λ for the Lebesgue measure of the plane. It follows from [3] that the set of points escaping to ∞ has zero Lebesgue's measure for every map in our family. It is not difficult to prove that for these functions the union $P(f) \cup\{\infty\}$ is not a metric attractor in sense of Milnor with respect to the measure λ on \mathbb{C}. The results of [1] implies that f_{Λ} is ergodic with respect to λ. Thus

Fact 1. The measure μ is ergodic.

2. Proof

For a positive integer n write $A_{n}:=\left\{z:|\Lambda| \mathrm{e}^{n}<|z| \leqslant|\Lambda| \mathrm{e}^{n+1}, \arg z \neq \arg \Lambda\right\}$. A fundamental rectangle will refer to any set in the form $\{x+2 \pi \mathrm{i} y: k<x<k+1, l<y<l+1\}$ for integers k, l. Thus, any fundamental rectangle is mapped with bounded distortion and onto some A_{n}.

Lemma 1. For all $n \in \mathbb{Z}_{+}$, $\inf \operatorname{ess}\left\{\frac{\mathrm{d} \mu}{\mathrm{d} \lambda}(z): z \in A_{n}\right\}>0$.
Proof. By [4, Th. 1], the post-singular set $P(f)$ has area 0 , so it cannot be the support of μ. Additionally, the image of every open set covers A_{n} after finitely many iterations, so it suffices to have the $\frac{\mathrm{d} \mu}{\mathrm{d} \lambda}$ essentially bounded away from 0 on any open set. Hence, Lemma 1 follows from the following fact:

Lemma 2. Suppose that F is a meromorphic function whose Julia set is the entire sphere, and v a probability invariant and ergodic measure absolutely continuous with respect to λ and such that the v-measure of the closure of the postsingular set of F is less than 1 . Then, there is an open set U such that

$$
\operatorname{infess}\left\{\frac{\mathrm{d} \nu}{\mathrm{~d} \lambda}(z): z \in U\right\}>0
$$

Proof. Fix U to be a disk in a positive distance from the post-critical set of F and such that $\eta:=\nu(U)$ is positive. Denote $\rho(z):=\frac{\mathrm{d} \nu}{\mathrm{d} \lambda}$. Pick $\epsilon>0$. In the argument to follow it is important distinguish between parameters that do or do not depend on ϵ.

A variant of Luzin's Theorem. For every $\epsilon>0$, we can find a continuous function with compact support $\rho_{\epsilon}: \mathbb{C} \rightarrow$ $[0,+\infty)$ such that

$$
\begin{equation*}
\int_{\mathbb{C}}\left(\rho_{\epsilon}(w)-\rho(w)\right)_{+} \mathrm{d} \lambda(w)<\epsilon \tag{1}
\end{equation*}
$$

where the plus subscript denote the positive part,

$$
\begin{equation*}
\int_{\mathbb{C}} \min \left(\rho_{\epsilon}(z), \rho(z)\right) \mathrm{d} \lambda(z) \geqslant 1-\eta / 10 . \tag{2}
\end{equation*}
$$

This statement follows from introductory measure theory.
Proof of Lemma 2 continued. Now for any k consider the set Ω_{k} of connected components of $F^{-k}(U)$ which intersect the support of ρ_{ϵ}. If $V \in \Omega_{k}$, then F^{k} maps V onto U univalently and with distortion bounded depending solely on U. Denote $d_{k}=\sup \left\{\operatorname{diam} V: V \in \Omega_{k}\right\}$. Since the Julia set is the whole sphere, $\lim _{k \rightarrow \infty} d_{k}=0$. Let G_{k} denote the set of inverse branches of F^{k} defined on U. For z in $U \rho_{\epsilon, k}(z)=\sum_{g \in G_{k}} \inf \left\{\rho_{\epsilon}(w): w=g(z), z \in U\right\}\left|g^{\prime}(z)\right|^{2}$. For any g, the ratio of the values of each summand at two points z_{1}, z_{2} is equal to the ratio of $\left|g^{\prime}\right|^{2}$ at these points, hence bounded above by some $Q_{0} \geqslant 1$ which depends solely on the distortion of inverse branches and therefore only on U. Consequently,

$$
\begin{equation*}
\frac{\rho_{\epsilon, k}\left(z_{1}\right)}{\rho_{\epsilon, k}\left(z_{2}\right)} \leqslant Q_{0} \tag{3}
\end{equation*}
$$

for every $z_{1}, z_{2} \in U$. Consider a similarly constructed $\tilde{\rho}_{\epsilon}(z)=\sum_{g \in G_{k}} \rho_{\epsilon}(g(z))\left|g^{\prime}(z)\right|^{2}$. By the change of variable formula

$$
\begin{align*}
\int_{U} \tilde{\rho}_{\epsilon}(z) \mathrm{d} \lambda(z) & =\int_{F^{-k}(U)} \rho_{\epsilon}(w) \mathrm{d} \lambda(w) \geqslant \int_{F^{-k}(U)} \min \left(\rho(w), \rho_{\epsilon}(w)\right) \mathrm{d} \lambda(w) \\
& =\int_{\mathbb{C}} \min \left(\rho(w), \rho_{\epsilon}(w)\right) \mathrm{d} \lambda(w)-\int_{F^{-k}(U)^{c}} \min \left(\rho(w), \rho_{\epsilon}(w)\right) \mathrm{d} \lambda(w) \\
& \geqslant 1-\eta / 10-v\left(F^{-k}(U)^{c}\right)=1-\eta / 10-(1-\eta)=\frac{9}{10} \eta \tag{4}
\end{align*}
$$

where we have also used condition (2). Clearly, $\rho_{\epsilon, k} \leqslant \tilde{\rho}_{\epsilon}$. Let δ_{ϵ} denote the modulus of continuity of ρ_{ϵ}. Then

$$
\int_{U}\left(\tilde{\rho}_{\epsilon}(z)-\rho_{\epsilon, k}(z)\right) \mathrm{d} \lambda(z) \leqslant \delta_{\epsilon}\left(d_{k}\right) \int_{U} \sum_{g \in G_{k}^{\prime}}\left|g^{\prime}(z)\right|^{2} \mathrm{~d} \lambda(z) .
$$

Here G_{k}^{\prime} denoted the set of only those inverse branches which map onto some $V \in \Omega_{k}$. By bounded distortion, if g maps on V, then for any $z \in U,\left|g^{\prime}(z)\right|^{2} \leqslant Q_{0} \frac{\lambda(V)}{\lambda(U)}$. Hence, we can further estimate

$$
\int_{U}\left(\tilde{\rho}_{\epsilon}(z)-\rho_{\epsilon, k}(z)\right) \mathrm{d} \lambda(z) \leqslant \delta_{\epsilon}\left(d_{k}\right) \lambda(U)^{-1} \sum_{V \in \Omega_{k}} \lambda(V) .
$$

Since all $V \in \Omega_{k}$ must touch the compact support of ρ_{ϵ} and their diameters tend uniformly to 0 with k, their joint area remains bounded depending solely on U, ϵ. Since also d_{k} tend to 0 with k, for all $k \geqslant k(\epsilon)$,

$$
\int_{U}\left(\tilde{\rho}_{\epsilon}(z)-\rho_{\epsilon, k}(z)\right) \mathrm{d} \lambda(z) \leqslant \frac{2}{5} \eta .
$$

Taking into account estimate (4), for $k \geqslant k(\epsilon), \int_{U} \rho_{\epsilon, k}(z) \mathrm{d} \lambda(z) \geqslant \eta / 2$. Based on estimate (3), we conclude that for all $k \geqslant k(\epsilon)$,

$$
\begin{equation*}
\rho_{\epsilon, k}(z) \geqslant Q_{1}>0 \tag{5}
\end{equation*}
$$

for all $z \in U$ and Q_{1} which only depends on U. Next, we estimate

$$
\int_{U}\left(\rho_{\epsilon, k}(z)-\rho(z)\right)_{+} \mathrm{d} \lambda(z) \leqslant \int_{U}\left(\tilde{\rho}_{\epsilon}(z)-\rho(z)\right)_{+} \mathrm{d} \lambda(z)=\int_{\mathbb{C}}\left(\rho_{\epsilon}(w)-\rho(w)\right)_{+} \mathrm{d} \lambda(w)<\epsilon
$$

where we used a change of variables formula and condition (1). For every $\epsilon>0$ and $k \geqslant k(\epsilon)$, we conclude from this and estimate (5) that $\rho(z)<\frac{Q_{1}}{2}$ on a set λ-measure less than $\frac{2 \epsilon}{Q_{1}}$. Since ϵ can be made arbitrarily small while Q_{1} is fixed, then $\rho(z) \geqslant \frac{Q_{1}}{2}$ on a set of full λ-measure in U.

2.1. Return times

Introduce the following function $g: \mathbb{R} \rightarrow \mathbb{R}: g(x)=|\Lambda| \sqrt{\mathrm{e}^{x}}$.

Lemma 3. There exists N_{0} such that for all $n \geqslant N_{0}$, there exist sets $W_{+}, W_{-} \subset A_{n}$ which consist of fundamental rectangles each of which is mapped by f onto some $A_{m} \subset\left\{z \in \mathbb{C}:|z| \geqslant g\left(|\Lambda| \mathrm{e}^{n}\right)\right\}$ in the case of $W_{+}, A_{m} \subset\{z \in$ $\left.\mathbb{C}:|z| \leqslant g\left(-|\Lambda| \mathrm{e}^{n}\right)\right\}$ for W_{-}and such that

$$
\lambda\left(W_{ \pm}\right)>\frac{1}{4} \lambda\left(A_{n}\right)
$$

Proof. For an annulus centered at 0 with inner radius $r, 1 / 3$ of its area belongs to the half-plane $\mathfrak{R z}>r / 2$ and another $1 / 3$ to $\mathfrak{R z}<-r / 2$. For A_{n} with n large enough, almost the entire area, certainly more than $1 / 4$ of the area of
the whole annulus, of $A_{n} \cap\{z: \Re z>|\Lambda| \exp n\}$ can be filled with fundamental rectangles. This defines W_{+}. The set W_{-}is constructed in the same way.

The following lemma generalizes Lemma 3:
Lemma 4. There are constants N_{1} and $K_{0}>1$ such that for all $n \geqslant N_{1}$ and any integer $p \geqslant 1$, there is a set $W_{p} \subset A_{n}$ such that:

- W_{p} is the union of sets each of which is mapped by f^{p-1} univalently onto a fundamental rectangle,
- for every $z \in W_{p}$ and $0<j<p, f^{j}(z) \in A_{m}$ with $m \geqslant n$, while $f^{p}(z) \in A_{m}$ with $m \geqslant g^{p}\left(|\Lambda| \mathrm{e}^{n}\right)$,
- $\lambda\left(W_{p}\right) \geqslant K_{0}^{-p}$.

Proposition 1. There exist constants N_{2} and $K_{0}, K_{1}>1$ such that for each $n \geqslant N_{2}$ and $p \geqslant 1, A_{n}$ contains a subset V_{p}, such that V_{p} are pairwise disjoint for different p and for every $z \in V_{p},\left|f^{i}(z)\right| \geqslant|\Lambda| \mathrm{e}^{n}$ for $i=0, \ldots, p$ while $\left|f^{p+1}(z)\right| \leqslant g\left(-g^{p}\left(|\Lambda| \mathrm{e}^{n}\right)\right)$. Additionally, for each $p, \lambda\left(V_{p}\right) \geqslant K_{1}^{-1} K_{0}^{-p} \lambda\left(A_{n}\right)$.

Proof of the proposition. We choose N_{2} at least equal to N_{1} from Lemma 4, such that $g\left(|\Lambda| \mathrm{e}^{n}\right) \geqslant|\Lambda| \mathrm{e}^{n}$ if $n \geqslant N_{2}$ and so big that the orbit 0 fits inside $D\left(0,|\Lambda| \mathrm{e}^{N_{2}-1}\right)$ and at least 1 . By the last choice, the pairwise disjointness of sets V_{p} will follow automatically from the conditions on orbits from V_{p}. Consider first the set W_{p} obtained from Lemma 4. It consists of sets U_{j} which are univalent preimages of fundamental rectangles, each of which is mapped with bounded distortion onto $A_{m} \subset\left\{z \in \mathbb{C}:|z| \geqslant g^{p}\left(|\Lambda| \mathrm{e}^{n}\right)\right\}$. Thus, a portion of U_{j} of area at least $K_{1}^{-1} \lambda\left(U_{j}\right)$ with K_{1} a constant, is occupied by the preimage by f^{p} of the set W_{-}from Lemma 3 . It is immediate that every z from this preimage satisfies the demands of Proposition 1. V_{p} is the union of such preimages for all U_{j} and hence its measure is bounded below as claimed in the proposition.

Proof of Theorem 1.

Lemma 5. For all $x \geqslant N_{3}$ for some N_{3} and every $\gamma>0, \lim _{p \rightarrow \infty} g^{p}(x) \gamma^{-p}=+\infty$.
Consider a slit annulus A_{n} for n at least equal to the constant N_{2} of Proposition 1 and $|\Lambda| \mathrm{e}^{n} \geqslant N_{3}$ of Lemma 5 . Let $\tau(z)$ for $z \in A_{n}$ be the first return time to A_{n}. Note that μ-almost every point returns since open sets return and μ is ergodic. Clearly τ is μ-integrable, but then also λ-integrable in view of Lemma 1 . Similarly, λ-almost every point returns. If $z \in D(0, r)$ then it takes at least $k \geqslant K_{2} \log r^{-1}$ for $f^{k}(z)$ to get in the distance at least 1 unit away from the orbit of $0 . K_{2}$ is a positive constant which depends on the maximum modulus of the derivative of f on some compact set. It follows that on each set V_{p} from Proposition 1, the return time is at least $K_{2}\left(\log |\Lambda|+g^{p}\left(|\Lambda| \mathrm{e}^{n}\right)\right)$. Since the measure of V_{p} is only exponentially small with p, by Lemma 5 , the return time is not λ-integrable which gives us the final contradiction.

References

[1] H. Bock, On the dynamics of entire functions on the Julia set, Result. Math. 30 (1996) 16-20.
[2] N. Dobbs, B. Skorulski, Non-existence of absolutely continuous invariant probabilities for exponential maps, Fund. Math. 198 (2008) $283-287$.
[3] A.È. Erëmenko, M. Lyubich, Dynamical properties of some classes of entire functions, Ann. Inst. Fourier (Grenoble) 42 (1992) $989-1020$.
[4] J. Graczyk, J. Kotus, G. Świa̧tek, Non-recurrent meromorphic functions, Fund. Math. 182 (2004) 269-281.
[5] J. Kotus, M. Urbański, Existence of invariant measures for transcendental subexpanding functions, Math. Z. 243 (2003) 25-36.
[6] J. Kotus, G. Świa̧tek, Invariant measures for meromorphic Misiurewicz maps, Math. Proc. Cambr. Phil. Soc., in press.

[^0]: * The first author is partially supported by a grant Chaos, fraktale i dynamika konforemna - N N201 0222 33. The second author acknowledges sabbatical support from Penn State University.

 E-mail addresses: J.Kotus@impan.gov.pl (J. Kotus), swiatek@math.psu.edu (G. Świątek).

