

Available online at www.sciencedirect.com

C. R. Acad. Sci. Paris, Ser. I 346 (2008) 559-562

COMPTES RENDUS MATHEMATIQUE

http://france.elsevier.com/direct/CRASS1/

Dynamical Systems

No finite invariant density for Misiurewicz exponential maps $\stackrel{\text{\tiny{$\stackrel{$} $}}}{=}$

Janina Kotus^a, Grzegorz Świątek^{a,b}

^a Faculty of Mathematics and Information Science, Warsaw University of Technology, 00-661 Warsaw, Poland
 ^b Department of Mathematics, Penn State University, University Park, PA 16802, USA

Received 20 December 2007; accepted after revision 7 March 2008

Presented by Étienne Ghys

Abstract

For exponential mappings such that the orbit of the only singular value 0 is bounded, it is shown that no integrable density invariant under the dynamics exists on \mathbb{C} . To cite this article: J. Kotus, G. Świątek, C. R. Acad. Sci. Paris, Ser. I 346 (2008). © 2008 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Résumé

Il n'existe aucune densité intégrable pour des applications exponentielles de Misiurewic. Pour les applications exponentielles de C dont l'orbite de la valeur singulière 0 est bornée, on montre qu'il n'existe aucune densité intégrable et invariante sous la dynamique. *Pour citer cet article : J. Kotus, G. Świątek, C. R. Acad. Sci. Paris, Ser. I 346 (2008).* © 2008 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

We consider one parameter family of exponential functions $f_A(z) = Ae^z$, $z \in \mathbb{C}$, $A \in \mathbb{C}^*$. These maps have only one finite singular value 0 whose forward trajectory determines the dynamics on \mathbb{C} . From now we assume that the orbit of the asymptotic value 0 is bounded and the Julia set $J(f_A) = \mathbb{C}$. Thus f satisfies so called Misiurewicz condition i.e. the post-singular set $P(f) := \bigcup_{n=0}^{\infty} f_A^n(0)$ is bounded and $P(f) \cap \operatorname{Crit}(f) = \emptyset$. It follows from [4, Th. 1] that P(f) is hyperbolic. The problem of existence of probabilistic invariant measure absolutely continuous with respect to the Lebesgue measure (abbr. *pacim*) for transcendental meromorphic functions satisfying Misiurewicz condition was discussed in [6]. However, this result cannot be applied to entire functions. The main result of this Note is the following theorem:

Theorem 1. Let $f(z) = \Lambda \exp(z)$ with $\Lambda \in \mathbb{C} \setminus \{0\}$ chosen so that the Julia set is the entire sphere and the orbit of 0 under f is bounded. Then f admits no probabilistic invariant measure absolutely continuous with respect to the Lebesgue measure.

 $^{^{*}}$ The first author is partially supported by a grant *Chaos, fraktale i dynamika konforemna* – N N201 0222 33. The second author acknowledges sabbatical support from Penn State University.

E-mail addresses: J.Kotus@impan.gov.pl (J. Kotus), swiatek@math.psu.edu (G. Świątek).

¹⁶³¹⁻⁰⁷³X/\$ – see front matter © 2008 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved. doi:10.1016/j.crma.2008.03.013

However these maps have σ -finite invariant measure absolutely continuous with respect to the Lebesgue measure (see [5]). A result similar to Theorem 1 has been mentioned to us by other authors, [2].

The proof will proceed by contradiction, so we suppose that such a measure exists and call it μ , while reserving λ for the Lebesgue measure of the plane. It follows from [3] that the set of points escaping to ∞ has zero Lebesgue's measure for every map in our family. It is not difficult to prove that for these functions the union $P(f) \cup \{\infty\}$ is not a metric attractor in sense of Milnor with respect to the measure λ on \mathbb{C} . The results of [1] implies that f_A is ergodic with respect to λ . Thus

Fact 1. *The measure* μ *is ergodic.*

2. Proof

For a positive integer *n* write $A_n := \{z: |\Lambda|e^n < |z| \le |\Lambda|e^{n+1}, \arg z \ne \arg \Lambda\}$. A *fundamental rectangle* will refer to any set in the form $\{x + 2\pi iy: k < x < k+1, l < y < l+1\}$ for integers *k*, *l*. Thus, any fundamental rectangle is mapped with bounded distortion and onto some A_n .

Lemma 1. For all $n \in \mathbb{Z}_+$, infess $\{\frac{d\mu}{d\lambda}(z): z \in A_n\} > 0$.

Proof. By [4, Th. 1], the post-singular set P(f) has area 0, so it cannot be the support of μ . Additionally, the image of every open set covers A_n after finitely many iterations, so it suffices to have the $\frac{d\mu}{d\lambda}$ essentially bounded away from 0 on any open set. Hence, Lemma 1 follows from the following fact: \Box

Lemma 2. Suppose that *F* is a meromorphic function whose Julia set is the entire sphere, and *v* a probability invariant and ergodic measure absolutely continuous with respect to λ and such that the *v*-measure of the closure of the post-singular set of *F* is less than 1. Then, there is an open set *U* such that

$$\inf \operatorname{ess}\left\{\frac{\mathrm{d}\nu}{\mathrm{d}\lambda}(z): \ z \in U\right\} > 0.$$

Proof. Fix *U* to be a disk in a positive distance from the post-critical set of *F* and such that $\eta := \nu(U)$ is positive. Denote $\rho(z) := \frac{d\nu}{d\lambda}$. Pick $\epsilon > 0$. In the argument to follow it is important distinguish between parameters that do or do not depend on ϵ .

A variant of Luzin's Theorem. For every $\epsilon > 0$, we can find a continuous function with compact support $\rho_{\epsilon} : \mathbb{C} \to [0, +\infty)$ such that

$$\int_{\mathbb{C}} \left(\rho_{\epsilon}(w) - \rho(w) \right)_{+} d\lambda(w) < \epsilon$$
(1)

where the plus subscript denote the positive part,

$$\int_{\mathbb{C}} \min(\rho_{\epsilon}(z), \rho(z)) d\lambda(z) \ge 1 - \eta/10.$$
⁽²⁾

This statement follows from introductory measure theory.

Proof of Lemma 2 continued. Now for any *k* consider the set Ω_k of connected components of $F^{-k}(U)$ which intersect the support of ρ_{ϵ} . If $V \in \Omega_k$, then F^k maps *V* onto *U* univalently and with distortion bounded depending solely on *U*. Denote $d_k = \sup\{\text{diam } V : V \in \Omega_k\}$. Since the Julia set is the whole sphere, $\lim_{k\to\infty} d_k = 0$. Let G_k denote the set of inverse branches of F^k defined on *U*. For *z* in $U \ \rho_{\epsilon,k}(z) = \sum_{g \in G_k} \inf\{\rho_{\epsilon}(w) : w = g(z), z \in U\}|g'(z)|^2$. For any *g*, the ratio of the values of each summand at two points z_1, z_2 is equal to the ratio of $|g'|^2$ at these points, hence bounded above by some $Q_0 \ge 1$ which depends solely on the distortion of inverse branches and therefore only on *U*. Consequently,

$$\frac{\rho_{\epsilon,k}(z_1)}{\rho_{\epsilon,k}(z_2)} \leqslant Q_0 \tag{3}$$

for every $z_1, z_2 \in U$. Consider a similarly constructed $\tilde{\rho}_{\epsilon}(z) = \sum_{g \in G_k} \rho_{\epsilon}(g(z)) |g'(z)|^2$. By the change of variable formula

$$\int_{U} \tilde{\rho}_{\epsilon}(z) d\lambda(z) = \int_{F^{-k}(U)} \rho_{\epsilon}(w) d\lambda(w) \geq \int_{F^{-k}(U)} \min(\rho(w), \rho_{\epsilon}(w)) d\lambda(w)$$

$$= \int_{\mathbb{C}} \min(\rho(w), \rho_{\epsilon}(w)) d\lambda(w) - \int_{F^{-k}(U)^{c}} \min(\rho(w), \rho_{\epsilon}(w)) d\lambda(w)$$

$$\geq 1 - \eta/10 - \nu (F^{-k}(U)^{c}) = 1 - \eta/10 - (1 - \eta) = \frac{9}{10}\eta$$
(4)

where we have also used condition (2). Clearly, $\rho_{\epsilon,k} \leq \tilde{\rho}_{\epsilon}$. Let δ_{ϵ} denote the modulus of continuity of ρ_{ϵ} . Then

$$\int_{U} \left(\tilde{\rho}_{\epsilon}(z) - \rho_{\epsilon,k}(z) \right) \mathrm{d}\lambda(z) \leqslant \delta_{\epsilon}(d_{k}) \int_{U} \sum_{g \in G'_{k}} \left| g'(z) \right|^{2} \mathrm{d}\lambda(z).$$

Here G'_k denoted the set of only those inverse branches which map onto some $V \in \Omega_k$. By bounded distortion, if g maps on V, then for any $z \in U$, $|g'(z)|^2 \leq Q_0 \frac{\lambda(V)}{\lambda(U)}$. Hence, we can further estimate

$$\int_{U} \left(\tilde{\rho}_{\epsilon}(z) - \rho_{\epsilon,k}(z) \right) \mathrm{d}\lambda(z) \leqslant \delta_{\epsilon}(d_{k})\lambda(U)^{-1} \sum_{V \in \Omega_{k}} \lambda(V).$$

Since all $V \in \Omega_k$ must touch the compact support of ρ_{ϵ} and their diameters tend uniformly to 0 with k, their joint area remains bounded depending solely on U, ϵ . Since also d_k tend to 0 with k, for all $k \ge k(\epsilon)$,

$$\int_{U} \left(\tilde{\rho}_{\epsilon}(z) - \rho_{\epsilon,k}(z) \right) \mathrm{d}\lambda(z) \leqslant \frac{2}{5}\eta.$$

Taking into account estimate (4), for $k \ge k(\epsilon)$, $\int_U \rho_{\epsilon,k}(z) d\lambda(z) \ge \eta/2$. Based on estimate (3), we conclude that for all $k \ge k(\epsilon)$,

$$\rho_{\epsilon,k}(z) \geqslant Q_1 > 0 \tag{5}$$

for all $z \in U$ and Q_1 which only depends on U. Next, we estimate

$$\int_{U} \left(\rho_{\epsilon,k}(z) - \rho(z) \right)_{+} \mathrm{d}\lambda(z) \leqslant \int_{U} \left(\tilde{\rho}_{\epsilon}(z) - \rho(z) \right)_{+} \mathrm{d}\lambda(z) = \int_{\mathbb{C}} \left(\rho_{\epsilon}(w) - \rho(w) \right)_{+} \mathrm{d}\lambda(w) < \epsilon$$

where we used a change of variables formula and condition (1). For every $\epsilon > 0$ and $k \ge k(\epsilon)$, we conclude from this and estimate (5) that $\rho(z) < \frac{Q_1}{2}$ on a set λ -measure less than $\frac{2\epsilon}{Q_1}$. Since ϵ can be made arbitrarily small while Q_1 is fixed, then $\rho(z) \ge \frac{Q_1}{2}$ on a set of full λ -measure in U. \Box

2.1. Return times

Introduce the following function $g: \mathbb{R} \to \mathbb{R}$: $g(x) = |\Lambda| \sqrt{e^x}$.

Lemma 3. There exists N_0 such that for all $n \ge N_0$, there exist sets $W_+, W_- \subset A_n$ which consist of fundamental rectangles each of which is mapped by f onto some $A_m \subset \{z \in \mathbb{C} : |z| \ge g(|\Lambda|e^n)\}$ in the case of W_+ , $A_m \subset \{z \in \mathbb{C} : |z| \le g(-|\Lambda|e^n)\}$ for W_- and such that

$$\lambda(W_{\pm}) > \frac{1}{4}\lambda(A_n).$$

Proof. For an annulus centered at 0 with inner radius r, 1/3 of its area belongs to the half-plane $\Re z > r/2$ and another 1/3 to $\Re z < -r/2$. For A_n with n large enough, almost the entire area, certainly more than 1/4 of the area of

the whole annulus, of $A_n \cap \{z: \Re z > |\Lambda| \exp n\}$ can be filled with fundamental rectangles. This defines W_+ . The set W_- is constructed in the same way. \Box

The following lemma generalizes Lemma 3:

Lemma 4. There are constants N_1 and $K_0 > 1$ such that for all $n \ge N_1$ and any integer $p \ge 1$, there is a set $W_p \subset A_n$ such that:

- W_p is the union of sets each of which is mapped by f^{p-1} univalently onto a fundamental rectangle,
- for every $z \in W_p$ and 0 < j < p, $f^j(z) \in A_m$ with $m \ge n$, while $f^p(z) \in A_m$ with $m \ge g^p(|\Lambda|e^n)$,
- $\lambda(W_p) \ge K_0^{-p}$.

Proposition 1. There exist constants N_2 and K_0 , $K_1 > 1$ such that for each $n \ge N_2$ and $p \ge 1$, A_n contains a subset V_p , such that V_p are pairwise disjoint for different p and for every $z \in V_p$, $|f^i(z)| \ge |\Lambda|e^n$ for i = 0, ..., p while $|f^{p+1}(z)| \le g(-g^p(|\Lambda|e^n))$. Additionally, for each p, $\lambda(V_p) \ge K_1^{-1}K_0^{-p}\lambda(A_n)$.

Proof of the proposition. We choose N_2 at least equal to N_1 from Lemma 4, such that $g(|A|e^n) \ge |A|e^n$ if $n \ge N_2$ and so big that the orbit 0 fits inside $D(0, |A|e^{N_2-1})$ and at least 1. By the last choice, the pairwise disjointness of sets V_p will follow automatically from the conditions on orbits from V_p . Consider first the set W_p obtained from Lemma 4. It consists of sets U_j which are univalent preimages of fundamental rectangles, each of which is mapped with bounded distortion onto $A_m \subset \{z \in \mathbb{C}: |z| \ge g^p(|A|e^n)\}$. Thus, a portion of U_j of area at least $K_1^{-1}\lambda(U_j)$ with K_1 a constant, is occupied by the preimage by f^p of the set W_- from Lemma 3. It is immediate that every z from this preimage satisfies the demands of Proposition 1. V_p is the union of such preimages for all U_j and hence its measure is bounded below as claimed in the proposition. \Box

Proof of Theorem 1.

Lemma 5. For all $x \ge N_3$ for some N_3 and every $\gamma > 0$, $\lim_{p \to \infty} g^p(x)\gamma^{-p} = +\infty$.

Consider a slit annulus A_n for n at least equal to the constant N_2 of Proposition 1 and $|A|e^n \ge N_3$ of Lemma 5. Let $\tau(z)$ for $z \in A_n$ be the first return time to A_n . Note that μ -almost every point returns since open sets return and μ is ergodic. Clearly τ is μ -integrable, but then also λ -integrable in view of Lemma 1. Similarly, λ -almost every point returns. If $z \in D(0, r)$ then it takes at least $k \ge K_2 \log r^{-1}$ for $f^k(z)$ to get in the distance at least 1 unit away from the orbit of 0. K_2 is a positive constant which depends on the maximum modulus of the derivative of f on some compact set. It follows that on each set V_p from Proposition 1, the return time is at least $K_2(\log |A| + g^p(|A|e^n))$. Since the measure of V_p is only exponentially small with p, by Lemma 5, the return time is not λ -integrable which gives us the final contradiction. \Box

References

- [1] H. Bock, On the dynamics of entire functions on the Julia set, Result. Math. 30 (1996) 16-20.
- [2] N. Dobbs, B. Skorulski, Non-existence of absolutely continuous invariant probabilities for exponential maps, Fund. Math. 198 (2008) 283–287.
- [3] A.È. Erëmenko, M. Lyubich, Dynamical properties of some classes of entire functions, Ann. Inst. Fourier (Grenoble) 42 (1992) 989–1020.
- [4] J. Graczyk, J. Kotus, G. Świątek, Non-recurrent meromorphic functions, Fund. Math. 182 (2004) 269-281.
- [5] J. Kotus, M. Urbański, Existence of invariant measures for transcendental subexpanding functions, Math. Z. 243 (2003) 25–36.
- [6] J. Kotus, G. Świątek, Invariant measures for meromorphic Misiurewicz maps, Math. Proc. Cambr. Phil. Soc., in press.