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Abstract

In this Note, we find all positive integers n such that 10n ±1 is a binary palindome. Our proof uses lower bounds for linear forms
in logarithms of rational numbers. To cite this article: F. Luca, A. Togbé, C. R. Acad. Sci. Paris, Ser. I 346 (2008).
© 2008 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Résumé

Sur des palindromes binaires du format 10n ± 1. Dans cette Note, nous trouvons tous les entiers positifs n tels que 10n ± 1
soit un palindrome binaire. Notre démontration utilise les minorations de formes linéaires en logarithmes de nombres rationnels.
Pour citer cet article : F. Luca, A. Togbé, C. R. Acad. Sci. Paris, Ser. I 346 (2008).
© 2008 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

Let b � 1 be an integer. A base b palindrome is a positive integer whose string of digits when written in base b

reads the same from left to right as from right to left. That is, if the base b representation of n is n = a1a2 · · ·am(b),
then ai = am−i+1 holds for all i = 1, . . . ,m. For example, 123 454 321 is a base 10 palindrome, and 7 = 111(2) is a
binary palindrome. Palindromes are fascinating numbers to mathematicians and aficionados alike who find a lot of
joy when accidentally stumbling upon a palindrome in real life. The construction of the famous Charles Bridge over
the Vltava river was started by King Charles IV at 5:31am on the 9th of July, 1357 this minute being then enumerated
as 135 797 531. It seems to be very difficult to prove any strong results about the presence of palindromes in various
arithmetically interesting sequences. For example, it is not known if there are infinitely many prime palindromes al-
though this is conjectured to be so. In fact, it is not even known if there are infinitely many square-free palindromes but
it is known that there are infinitely many cube free ones! Several interesting results about prime factors of palindromes
can be found in [2] and [3]. Some recreational results about palindromic squares can be found in [1] and [4].
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Given any positive integer n, both 10n +1 = 100 · · ·01(10) (with n−1 zeros), as well as 10n −1 = 99 · · ·9(10) (with
n nines) are palindromes in base 10. In this Note, we look at the values of n such that 10n ± 1 is a base 2 palindrome.

In [6], it was shown that the set of positive integers n such that Fn, the nth Fibonacci number, is a base b palindrome
is of asymptotic density zero. Almost certainly this set is finite for any given b, but this has not been proved yet. The
result proved there in fact applies with the Fibonacci sequence (Fn)n�0 replaced by any Lucas sequence whose
characteristic roots are quadratic units. In the last section of [6] it is shown how one may adapt the arguments used
there to deal also with sequences of the form an ± 1, where a and b multiplicatively independent. The condition
that a and b are multiplicatively independent is needed for otherwise one can easily show that the set of n such that
an ± 1 is a base b palindrome contains an infinite arithmetical progression. When additionally all the prime factors
of b divide a, it is pointed out, without proof, that the set of such n is finite and effectively computable. In this note,
we give the details of the proof of this assertion and perform the computations for the case when a = 10 and b = 2.

Our result is the following:

Theorem 1.1. The only positive integers n such that 10n ± 1 are binary palindromes are 1,2, i.e. 9 = 1001(2) and
99 = 1100011(2).

2. The proof

We assume first that n > 1000. We put m for the number of binary digits of N = 10n ± 1. Since none of 10n and
10n ± 1 is a power of 2, it follows that

m = ⌊(
log(10n ± 1)

)
/(log 2)

⌋ + 1 = ⌊
n(log 10)/(log 2)

⌋ + 1 = n + ⌊
n(log 5)/(log 2)

⌋ + 1.

Put � = �n(log 5)/(log 2)� + 1 for the number of binary digits of 5n. The last binary n + 1 digits of N are 100 . . .01
with n − 1 zeros, or 011 . . .11 with n ones, according to whether the sign is + or −, respectively. Since N is a binary
palindrome, the first binary digits of N must be 100 . . .01 with n − 1 zeros and 11 . . .110 with n ones, when the sign
is + and respectively −. Since 2 < 5, the first n binary digits of N are the same as the first n binary digits of 5n. In
fact, this is true for the first � − 1 � n binary digits of N . Thus, in the + case, we have

2� < 5n � 2� + 2�−n + 2�−n−1 + · · · + 1 < 2� + 2�−n+1,

while in the − case

2�+1 > 5n > 2� + 2�−1 + · · · + 2�−n+1 = 2�−n+1(2n−1 + · · · + 1) = 2�−n+1(2n − 1) = 2�+1 − 2�−n+1.

Putting k = � or � + 1 according to whether the sign is + or −, we get that

|5n2−k − 1| < 2�−n+1−k � 2−n+1.

Put Λ = n log 5 − k log 2. The above inequality becomes |eΛ − 1| < 2−n+1. If Λ > 0, then

|Λ| = Λ < eΛ − 1 < 2−n+1,

while if Λ < 0, then the inequality

|eΛ − 1| = 1 − e−|Λ| < 2−n+1

leads to

|Λ| < e|Λ| − 1 <
1

1 − 2−n+1
− 1 = 2−n+1

1 − 2−n+1
< 2−n+2

because n > 2 (thus, 2−n+1 < 1/2). In conclusion, the inequality

|Λ| < 2−n+2

holds in both cases and it implies

(n − 2) log 2 < − log |Λ|. (1)

We have now set ourselves up to apply a lower bound for a linear form in logarithms. There are many such in the
literature. We have chosen to apply the following one which is Corollary 2 on page 228 in [5]. First, let us introduce
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some notations. Let a1 and a2 be integers > 1, b1 and b2 be positive integers, A1 and A2 be positive real numbers
such that Ai � max{ai, e} for i = 1,2, and Λ = b2 loga2 − b1 loga1. Let

b′ = b1

logA2
+ b2

logA1
.

With these notations, the above mentioned result from [5] asserts that

− log |Λ| � 24.34
(
max{logb′ + 0.14,21})2 logA1 logA2. (2)

For us, we can take a1 = 2, a2 = 5, b1 = k, b2 = n, A1 = e and A2 = 5. Thus,

b′ = k

log 5
+ n � � + 1

log 5
+ n � 1

log 5

(
n

log 5

log 2
+ 2

)
+ n � n + n

log 2
+ 2

log 5
< 3n + 2. (3)

Combining estimates (1) with (2) and (3), we get

(n − 2) log 2 < 24.34 max
{
log(3n + 2) + 0.14,21

}2 log 5. (4)

The last inequality above implies that n � 5500. A few seconds of computation with Mathematica revealed that in the
range n � 5500, there are no other binary palindromes among 10n ± 1 except for the two shown in the statement of
the theorem, which completes the proof.
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