Arithmetic coherent states and quantization theory

André Unterberger
Département de mathématiques, FRE 311, Université de Reims, BP 1039, 51687 Reims cedex 2, France

Received 17 January 2008; accepted 17 March 2008
Available online 15 April 2008
Presented by Jean-Michel Bony

Abstract

Let $f(z)=q^{\kappa} \sum_{m \geqslant 0} a_{m} q^{m}$, with $q=\mathrm{e}^{2 i \pi z}$ and $0<\kappa \leqslant 1$, be a holomorphic modular form of real weight $\tau+1, \tau>-1$, for the group $\Gamma=\mathrm{SL}(2, \mathbb{Z})$ and for an arbitrary multiplier; let \mathfrak{s}_{τ} be the distribution on the half-line such that $\mathfrak{s}_{\tau}(t)=\sum_{m \geqslant 0} a_{m} \delta(t-$ $m-\kappa)$. Let $\mathcal{D}_{\tau+1}$ be the usual realization, in a Hilbert space $\mathcal{H}_{\tau+1}$ of functions on the half-line, of a representation from the projective discrete series of $G=\operatorname{SL}(2, \mathbb{R})$ (or the prolongation thereof in the case when $-1<\tau \leqslant 0$). Then, the set of transforms $\mathfrak{s}_{\tau}^{g}=\mathcal{D}_{\tau+1}\left(g^{-1}\right) \mathfrak{s}_{\tau}, g$ describing any set of representatives of $G \bmod \Gamma$, can be regarded as a set of coherent states for the representation under study. Analyzing appropriate operators in $\mathcal{H}_{\tau+1}$ by means of their diagonal matrix elements against the distributions \mathfrak{s}_{τ}^{g} brings to light, as a spectral-theoretic density, the convolution L-function $L(\bar{f} \otimes f, s)$. Much more can, and will, be said in a forecoming Note in the cases when $\tau= \pm \frac{1}{2}$. To cite this article: A. Unterberger, C. R. Acad. Sci. Paris, Ser. I 346 (2008).

© 2008 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Résumé

États cohérents arithmétiques et quantification. Soit $f(z)=q^{\kappa} \sum_{m \geqslant 0} a_{m} q^{m}$, avec $q=\mathrm{e}^{2 \mathrm{i} \pi z}$ et $0<\kappa \leqslant 1$, une forme modulaire holomorphe f de poids réel $\tau+1, \tau>-1$, pour le groupe $\Gamma=\operatorname{SL}(2, \mathbb{Z})$ et pour un multiplicateur arbitraire ; soit $\mathfrak{s} \tau$ la distribution sur la demi-droite telle que $\mathfrak{s}_{\tau}(t)=\sum_{m \geqslant 0} a_{m} \delta(t-m-\kappa)$. Soit $\mathcal{D}_{\tau+1}$ une représentation de la série discrète projective de $G=\operatorname{SL}(2, \mathbb{R})$ (ou du prolongement de celle-ci dans le cas où $-1<\tau \leqslant 0$) réalisée, de la manière usuelle, dans un espace de Hilbert $\mathcal{H}_{\tau+1}$ de functions sur la demi-droite. Alors, l'ensemble des transformées $\mathfrak{s}_{\tau}^{g}=\mathcal{D}_{\tau+1}\left(g^{-1}\right) \mathfrak{s}_{\tau}, g$ décrivant un système de représentants de $G \bmod \Gamma$, peut être regardé comme une famille d'états cohérents pour la représentation considérée. L'analyse d'opérateurs appropriés dans $\mathcal{H}_{\tau+1}$ au moyen de leurs éléments de matrices diagonaux contre la famille de distributions \mathfrak{s}_{τ}^{g} fait apparaître, comme densité spectrale, la function $L(\bar{f} \otimes f, s)$. Le cas où $\tau= \pm \frac{1}{2}$ permet davantage et sera traité dans une Note suivante. Pour citer cet article : A. Unterberger, C. R. Acad. Sci. Paris, Ser. I 346 (2008).
© 2008 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Let $\tau>-1$: given $g=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in G$, and a function f holomorphic in the upper half-plane Π, set

$$
\left(\pi_{\tau+1}(g) f\right)(z)=(-c z+a)^{-\tau-1} f\left(\frac{d z-b}{-c z+a}\right)
$$

[^0]for some holomorphic determination, for fixed g, of the function $z \mapsto(-c z+a)^{-\tau-1}$: which determination has been chosen will turn out to be irrelevant in the sequel. A τ-adapted distribution \mathfrak{s}_{τ} is a measure on the line of the kind
$$
\mathfrak{s}_{\tau}(t)=\sum_{m \geqslant 0} a_{m} \delta(t-m-\kappa)
$$

for some $\kappa \in] 0,1]$, where the sequence $\left(a_{m}\right)$ is controlled by some power of $m+1$, satisfying the following property. Set $f(z)=q^{\kappa} \sum_{m \geqslant 0} a_{m} q^{m}$ with $q=\mathrm{e}^{2 \mathrm{i} \pi z}$ and $q^{\kappa}=\mathrm{e}^{2 \mathrm{i} \pi \kappa z}$: it is assumed that the function f is invariant, up to the multiplication by some complex number of absolute value 1 , by the transformation $\pi_{\tau+1}\left(\left(\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right)\right)$. As an example, one can take $\kappa=\frac{\tau+1}{12}$ and borrow the coefficients a_{m} from the Fourier expansion of the function

$$
f(z)=(\eta(z))^{2 \tau+2}=q^{\frac{\tau+1}{12}} \prod_{n \geqslant 1}\left(1-q^{n}\right)^{2 \tau+2},
$$

a fractional power of Ramanujan's Δ-function. We shall also consider [1, p. 249] the convolution L-function

$$
L(\bar{f} \otimes f, s)=\sum_{m \geqslant 0}\left|a_{m}\right|^{2}(m+\kappa)^{-s-\tau}, \quad \operatorname{Re} s>1,
$$

and the analytic continuation for $s \neq 0,1$ of the product of this function by $\zeta(2 s)$, as provided by the Rankin-Selberg unfolding method.

Consider on the other hand the Hilbert space $\mathcal{H}_{\tau+1}$ of functions $v=v(s)$ on $(0, \infty)$, square-integrable with respect to the measure $s^{-\tau} \mathrm{d} s$. In the case when $\tau>0$, the Laplace transformation $v \mapsto f$, with

$$
f(z)=(4 \pi)^{\frac{\tau}{2}}(\Gamma(\tau))^{-\frac{1}{2}} z^{-\tau-1} \int_{0}^{\infty} v(s) \mathrm{e}^{-2 \mathrm{i} \pi s z^{-1}} \mathrm{~d} s
$$

is an isometry from $\mathcal{H}_{\tau+1}$ onto the space of holomorphic functions f in Π, square-integrable with respect to the measure $(\operatorname{Im} z)^{\tau+1} \mathrm{~d} \mu(z)$, where $\mathrm{d} \mu$ is the standard invariant measure on Π. Moreover [4, p. 60], it intertwines the projective representation $\pi_{\tau+1}$ with a (projective) representation $\mathcal{D}_{\tau+1}$ of G in $\mathcal{H}_{\tau+1}$, given in particular, if $b>0$ and $v \in C_{0}^{\infty}(] 0, \infty[)$, by the equation

$$
\left(\mathcal{D}_{\tau+1}(g) v\right)(s)=\mathrm{e}^{-\mathrm{i} \pi \frac{\tau+1}{2}} \frac{2 \pi}{b} \int_{0}^{\infty} v(t)\left(\frac{s}{t}\right)^{\frac{\tau}{2}} \exp \left(2 \mathrm{i} \pi \frac{d s+a t}{b}\right) J_{\tau}\left(\frac{4 \pi}{b} \sqrt{s t}\right) \mathrm{d} t
$$

This equation makes it possible to extend the definition of $\mathcal{D}_{\tau+1}$ to the case when $-1<\tau \leqslant 0$, obtaining as a result a projective representation still unitary, but no longer square-integrable.

Starting from the space $C_{\tau+1}^{\infty}\left(\mathbb{R}^{+}\right)$of C^{∞} vectors of the representation $\mathcal{D}_{\tau+1}$, it is possible, by duality, to extend the operators $\mathcal{D}_{\tau+1}(g)$ to a distribution setting. In particular, using the extension (antilinear with respect to the variable on the left-hand side) of the scalar product $(\mid)_{\tau+1}$ on $\mathcal{H}_{\tau+1}$, define the distributions

$$
\mathfrak{s}_{\tau}^{g}=\mathcal{D}_{\tau+1}\left(g^{-1}\right) \mathfrak{s}_{\tau}, \quad g \in \operatorname{SL}(2, \mathbb{R})
$$

by means of the equation $\left(\mathfrak{s}_{\tau}^{g} \mid v\right)_{\tau+1}=\left(\mathfrak{s}_{\tau} \mid \mathcal{D}_{\tau+1}(g) v\right)_{\tau+1}$: it is understood that $(t \mapsto \delta(t-a) \mid v)_{\tau+1}=a^{-\tau} v(a), a>0$. Note that the statement that follows does not depend on the choice of any phase factor (a function of g of absolute value 1) which may affect the definition of $\mathcal{D}_{\tau+1}(g)$.

Theorem 1. Normalize the Haar measure $\mathrm{d} g$ on G as $\mathrm{d} g=\frac{1}{2 \pi} \mathrm{~d} \mu(z) \mathrm{d} \theta$ if $x=x+\mathrm{i} y$ and $g=\left(\begin{array}{c}y^{\frac{1}{2}} x y^{-\frac{1}{2}} \\ 0\end{array} y^{-\frac{1}{2}}\right)\left(\begin{array}{c}\cos \theta-\sin \theta \\ \sin \theta \\ \cos \theta\end{array}\right)$, $0 \leqslant \theta<2 \pi$. Let $v \in C_{\tau+1}^{\infty}\left(\mathbb{R}^{+}\right)$. One has the identity

$$
\int_{\Gamma \backslash G}\left|\left(\mathfrak{s}_{\tau}^{g} \mid v\right)_{\tau+1}\right|^{2} \mathrm{~d} g=\frac{(4 \pi)^{\tau+1}}{\Gamma(\tau+1)}\left\|y^{\frac{\tau+1}{2}} f\right\|_{L^{2}(\Gamma \backslash \Pi)}^{2}\|v\|_{\tau+1}^{2},
$$

where f is the modular form of weight $\tau+1$ associated to \mathfrak{s}_{τ}, so that the function $z \mapsto y^{\frac{\tau+1}{2}}|f(z)|$ is automorphic and rapidly decreasing at infinity in the fundamental domain.

Polarizing this identity makes it possible to write any $v \in C_{\tau+1}^{\infty}\left(\mathbb{R}^{+}\right)$as an integral superposition of the distributions \mathfrak{s}_{τ}^{g}, which may therefore be considered as a family of (arithmetic) coherent states for the representation $\mathcal{D}_{\tau+1}$.

It is necessary for the following to consider a symbolic calculus of operators acting within the space $\mathcal{H}_{\tau+1}$, covariant under the representation $\mathcal{D}_{\tau+1}$ and the linear action of G on the plane \mathbb{R}^{2}, taken as a phase space for the symbolic calculus in question (the hyperbolic half-plane would not do here). One must introduce the Euler operator $2 \mathrm{i} \pi \mathcal{E}=x \frac{\partial}{\partial x}+\xi \frac{\partial}{\partial \xi}+1$ and its functions in the spectral-theoretic sense, and the involution \mathcal{G} such that

$$
(\mathcal{G} h)(x, \xi)=2 \int_{\mathbb{R}^{2}} h(y, \eta) \mathrm{e}^{4 \mathrm{i} \pi(x \eta-y \xi)} \mathrm{d} y \mathrm{~d} \eta .
$$

The following is a direct definition of the "soft" horocyclic calculus: obtained after some lengthy calculations:
Definition 1. Assume $\tau>-\frac{1}{2}$. Given a symbol $h \in \mathcal{S}\left(\mathbb{R}^{2}\right)$, even and changing to its negative under \mathcal{G}, the operator $\mathrm{Op}_{\mathrm{soft}}^{\tau}(h)$ is defined on $C_{0}^{\infty}(] 0, \infty[)$ by the equation

$$
\begin{aligned}
\left(\mathrm{Op}_{\mathrm{soft}}^{\tau}(h) u\right)(a)= & a^{\tau} \int_{0}^{\infty} u(b) \mathrm{d} b \int_{\mathbb{R}^{2}} h(x, \xi) \mathrm{e}^{2 \mathrm{i} \pi(a-b) \frac{\xi}{x}}|x|^{2 \tau}\left[x^{4}-\frac{(a-b)^{2}}{4}\right] \\
& \times\left[\left(x^{2}+\frac{1}{2}(\sqrt{a}-\sqrt{b})^{2}\right)\left(x^{2}+\frac{1}{2}(\sqrt{a}+\sqrt{b})^{2}\right)\right]^{-\tau-\frac{3}{2}} \mathrm{~d} x \mathrm{~d} \xi
\end{aligned}
$$

Note that the same formula would lead to the zero operator if a \mathcal{G}-invariant symbol were used instead. Since the Gamma function is rapidly decreasing at infinity on vertical lines in the complex plane, the calculus $\mathrm{Op}_{\text {soft }}^{\tau}$ is a softened up version of another symbolic calculus, to be called the isometric horocyclic calculus, linked to it by the equation

$$
\mathrm{Op}_{\text {soft }}^{\tau}(h)=\frac{2^{-\tau}}{\Gamma\left(\tau+\frac{3}{2}\right)} \mathrm{Op}_{\mathrm{iso}}^{\tau}\left(\Gamma(1+\mathrm{i} \pi \mathcal{E}) \Gamma\left(\tau+\frac{1}{2}-i \pi \mathcal{E}\right) h\right) .
$$

The isometric horocyclic calculus (introduced in a different way in [4]) establishes an isometry between the L^{2}-space of symbols and the space of Hilbert-Schmidt operators concerned. In the case when $\tau=\mp \frac{1}{2}$, a quadratic transformation on the variable makes it possible to intertwine the representation $\mathcal{D}_{\tau+1}$ with the even (resp. odd) part of the metaplectic representation, and the isometric horocyclic symbol is none other than the Weyl symbol of the corresponding operator A on $L^{2}(\mathbb{R})$, made unambiguous by the requirement that A and A^{*} should be zero on the subspace of $L^{2}(\mathbb{R})$ consisting of functions of the inappropriate parity.

In the following theorem, the assumption that h is radial makes it possible to relax the assumption that $\tau>-\frac{1}{2}$. One can also, in this case, extend the operator $\mathrm{Op}_{\text {soft }}^{\tau}(h)$ so as to make the scalar product

$$
\left(\mathcal{A}_{\tau} h\right)(z)=\left(\mathfrak{s}_{\tau}^{g} \mid \mathrm{Op}_{\mathrm{soft}}^{\tau}(h) \mathfrak{s}_{\tau}^{g}\right)
$$

meaningful: with $g=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$, the right-hand side only depends on $z=\frac{a i+b}{c i+d}$ because h is radial. Then, $\mathcal{A}_{\tau} h$ is automorphic because of the assumptions regarding \mathfrak{s}_{τ}.

Theorem 2. Let $h \in \mathcal{S}\left(\mathbb{R}^{2}\right)$ be a radial function changing to its negative under \mathcal{G}, and let $\tau>-1$ be given. Assume that $h=\mathrm{i} \pi \mathcal{E} h_{1}$ for some radial \mathcal{G}-invariant function $h_{1} \in \mathcal{S}\left(\mathbb{R}^{2}\right)$. The spectral decomposition of the automorphic function $\mathcal{A}_{\tau} h$ is given by the formula

$$
\begin{aligned}
\left(\mathcal{A}_{\tau} h\right)(z)= & -2^{-\tau-1} \pi^{\frac{1}{2}} \frac{\Gamma(\tau+1)}{\Gamma\left(\tau+\frac{3}{2}\right)} h(0) \operatorname{Res}_{s=1}(L(\bar{f} \otimes f, s)) \\
& +\frac{2 \pi^{\frac{1}{2}}}{\mathrm{i}} \int_{\frac{1}{2}-\mathrm{i} \infty}^{\frac{1}{2}+\mathrm{i} \infty} \psi(1-2 s) \frac{\Gamma\left(s-\frac{1}{2}\right) \Gamma\left(\frac{3}{2}-s\right) \Gamma(s+\tau)}{2^{s+\tau} \Gamma(s) \Gamma\left(\tau+\frac{3}{2}\right)} \frac{L(\bar{f} \otimes f, s)}{\zeta^{*}(2-2 s)} E^{*}(z, s) d s,
\end{aligned}
$$

where $E^{*}(z, s)=\pi^{-s} \Gamma(s) \zeta(2 s) E(z, s)$, the last factor being the usual non-holomorphic Eisenstein series, and the function ψ is defined by the equation

$$
\psi(s)=\frac{1}{2 \pi} \int_{0}^{\infty} r^{-s} H\left(r^{2}\right) \mathrm{d} r, \quad \operatorname{Re} s<1,
$$

in which $h(x, \xi)=H\left(x^{2}+\xi^{2}\right)$. In particular, no cusp-forms enter it.
Note that, from results of Shimura [3] (cf. [1, p. 250]), the zeros of the L-function of interest on the spectral line Re $s=\frac{1}{2}$ include the critical zeros of the zeta function whenever $\kappa=1, \tau+1$ is an even integer and f is a Hecke eigenform for Γ.

Corollary 1. Under the assumptions of the preceding theorem, and assuming moreover that $h(0)=0$, let $h^{\text {iso }}$ be the isometric horocyclic symbol of the operator $\mathrm{Op}_{\mathrm{soft}}^{\tau}(h)$. One has

$$
\left\|\mathcal{A}_{\tau} h\right\|_{L^{2}(\Gamma \backslash \Pi)}^{2}=\frac{1}{\pi}\left\|\frac{\zeta(1-2 \mathrm{i} \pi \mathcal{E})}{\zeta(-2 \mathrm{i} \pi \mathcal{E})} L\left(\bar{f} \otimes f, \frac{1}{2}-\mathrm{i} \pi \mathcal{E}\right) h^{\mathrm{iso}}\right\|_{L^{2}\left(\mathbb{R}^{2}\right)}^{2} .
$$

The main difficulties lie in calculations relative to operators and their symbols. It is also necessary for the proof to extend the Rankin-Selberg unfolding method or, what leads to this effect, the construction of Eisenstein series by the Poincaré summation method: one cannot substitute for the function $z \mapsto y^{s}$, in the usual definition of Eisenstein series, the Whittaker function $z \mapsto y^{\frac{1}{2}} K_{s-\frac{1}{2}}(2 \pi k y) \mathrm{e}^{2 i \pi k x}$ since the series obtained would never converge. However, one has the following possibility, starting from the function (not a generalized eigenfunction of the Laplacian)

$$
c_{s, k}(z)=y^{\frac{3}{2}} K_{s-\frac{1}{2}}(2 \pi k y) \mathrm{e}^{2 \mathrm{i} \pi k x}:
$$

Theorem 3. With $k=1,2, \ldots$, set

$$
\mathfrak{f}_{s}(z)=\frac{1}{2} \sum_{(m, n)=1}\left(\frac{y}{|m z+n|^{2}}\right)^{\frac{3}{2}} K_{s-\frac{1}{2}}\left(\frac{2 \pi k y}{|m z+n|^{2}}\right) \exp \left(2 \mathrm{i} \pi k \operatorname{Re} \frac{a z+b}{m z+n}\right)
$$

with an $-b m=1$. The series converges when $\frac{1}{2}<\operatorname{Re} s<1$, and the function $s \mapsto \mathfrak{f}_{s}(z)$ so defined is holomorphic. It extends as a meromorphic function in the whole complex plane, with two families of poles, all simple: the ones from the first family are located at points $s=n+\frac{3}{2} \pm \frac{\mathrm{i} \lambda_{j}}{2}$ or $s=-n-\frac{1}{2} \pm \frac{\mathrm{i} \lambda_{j}}{2}$ where $n=0,1, \ldots$ and $\left(\frac{1+\lambda_{j}^{2}}{4}\right)$ is the sequence of eigenvalues of the hyperbolic Laplacian Δ in $L^{2}(\Gamma \backslash \Pi)$; the ones from the second family are to be found within the sequence $\left\{-\frac{1}{2}-n, n=0,1, \ldots\right\}$ or $\left\{\frac{3}{2}+n, n=0,1, \ldots\right\}$. The function

$$
E_{k}(z, s)=\frac{2 \pi k}{1-2 s}\left[\mathfrak{f}_{s-1}(z)-\mathfrak{f}_{s+1}(z)\right]
$$

coincides with $\alpha_{k}(s) E(z, s)$, where

$$
\alpha_{k}(s)=\frac{\pi^{1-s}}{2} \frac{\Gamma\left(s-\frac{1}{2}\right) \Gamma\left(\frac{1}{2}-s\right)}{\Gamma(1-s) \zeta(2-2 s)} k^{s-\frac{1}{2}} \sum_{1 \leqslant d \mid k} d^{1-2 s} .
$$

The proof is based on the use of the non-holomorphic Poincaré-Selberg series introduced in [2].

References

[1] H. Iwaniec, Topics in Classical Automorphic Forms, Graduate Studies in Math., vol. 17, Amer. Math. Soc., Providence, RI, 1997.
[2] A. Selberg, On the estimation of Fourier coefficients of modular forms, Proc. Symp. Pure Math. 8 (1963) 1-15.
[3] G. Shimura, Modular Forms of Half-Integral Weight, Lecture Notes in Math., vol. 320, Springer-Verlag, Berlin, 1973.
[4] A. Unterberger, Automorphic Pseudodifferential Analysis and Higher-Level Weyl Calculi, Progress in Math., Birkhäuser, Basel, 2002.

[^0]: E-mail address: andre.unterberger@univ-reims.fr.

