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Abstract

Let G = SL(2,R) and Γ = SL(2,Z). Given a finite set S of primes including 2, and N = 2
∏

p∈S p, one can define a set (�ρ)

of discretely supported measures on the line, parametrized by the set of squares in (Z/NZ)×, with the following properties: (i) the
linear space generated by the distributions �ρ is invariant under the metaplectic transformation Met(g̃−1) associated to any element

g̃−1 of the metaplectic group lying above Γ ; (ii) for every g̃ in the metaplectic group, lying above g ∈ G, set �
g̃
ρ = Met(g̃−1)�ρ :

then, given u ∈ S(R) with the parity determined by #S, the sum
∑

ρ |〈�g̃
ρ ,u〉|2 only depends on the class Γ g, and the integral of

this expression over Γ \G is the product of ‖u‖2
L2(R)

by a positive constant. Analyzing an operator A :S ′(R) → S(R) by means

of its diagonal matrix elements (�
g̃
ρ | A�

g̃
ρ ) brings to light a natural spectral–theoretic role of the family of partial products of the

Eulerian expansion of the zeta function. To cite this article: A. Unterberger, C. R. Acad. Sci. Paris, Ser. I 346 (2008).
© 2008 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Résumé

Calcul de Weyl et fonction zeta. Soient G = SL(2,R) and Γ = SL(2,Z). Étant donnés un ensemble fini S de nombres
premiers comprenant 2, et N = 2

∏
p∈S p, on peut construire un ensemble (�ρ) de mesures à support discret sur la droite, indexé

par l’ensemble des carrés dans (Z/NZ)×, avec les propriétés suivantes : (i) l’espace vectoriel engendré par les distributions �ρ

est invariant par toute transformation métaplectique Met(g̃−1) au–dessus d’un point de Γ ; (ii) pout tout g̃ appartenant au groupe

métaplectique, au–dessus d’un point g ∈ G, posons �
g̃
ρ = Met(g̃−1)�ρ : alors, étant donnée u ∈ S(R), de parité déterminée par

le nombre #S, la somme
∑

ρ |〈�g̃
ρ ,u〉|2 ne dépend que de la classe Γ g, et l’intégrale de cette expression au–dessus de Γ \G est le

produit de ‖u‖2
L2(R)

par une constante positive. L’analyse d’un opérateur A :S ′(R) → S(R) au moyen des produits scalaires (�
g̃
ρ |

A�
g̃
ρ ) met en évidence un rôle naturel, comme ingrédient d’une densité spectrale, joué par tout produit partiel du développement

eulérien de la fonction zeta. Pour citer cet article : A. Unterberger, C. R. Acad. Sci. Paris, Ser. I 346 (2008).
© 2008 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Let N be 4 times a squarefree odd positive integer, and let S be the set of primes dividing N ; let Λ be the set
of μ mod N such that μ2 ≡ 1 mod 2N . Set α2 = 2, αp = 1 for 2 	= p ∈ S, Mp = p−αpN and M = ∑

p∈S Mp , so
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that (M,N) = 1. The canonical isomorphism (Z/NZ)× ∼ (Z/4Z)× × ∏
2	=p∈S(Z/pZ)× restricts as an isomorphism

Λ ∼ {±1}#S : there is a unique character χ :Λ → {±1} the restriction of which to each factor of this decomposition
is the non-trivial character of {±1}. Next, we denote as RN a set of representatives of (Z/NZ)× mod Λ, choosing in
particular R4 = R12 = {1}. For every ρ ∈ RN , consider the distribution on the line

�ρ(x) =
∑
μ∈Λ

χ(μ)
∑
�∈Z

δ

(
x − N� + ρμ√

N

)
,

the parity of which is given by the number #S of prime factors of N . For instance, the (sole) distribution obtained is

deven(x) =
∑
m∈Z

χ(12)(m)δ

(
x − m√

12

)
if N = 12,

dodd(x) =
∑
m∈Z

χ(4)(m)δ

(
x − m

2

)
if N = 4,

if one denotes as χ(12) (resp. χ(4)) the non-trivial even Dirichlet character mod 12 (resp. the non-trivial Dirichlet
character mod 4). Letting even (resp. odd) functions u on the line correspond to functions v on the half-line under the

correspondence such that u(x) = |x|v(x2

2 ) (resp. u(x) = v(x2

2 ) signx), next using the Laplace transformation from a
function or distribution v on the half-line to the function f (z) = ∫ ∞

0 v(t)e2iπtz dt in the upper half-plane, one sees

that the function f corresponding to the distribution deven is the Dedekind eta function f (12)(z) = q
1
24

∏
n�1(1 − qn),

with q = e2iπz, and that corresponding to the distribution dodd is f (4) = 1
2 (f (12))3. This provides the link with the

situation described in a preceding Note [2].

Proposition 1. Given N as above, the distributions �ρ , ρ ∈ RN , are linearly independent and the space they generate

depends only on N ; it is stable under the multiplication by eiπx2
as well as under the Fourier transformation. In the

basis made up by the above set of distributions, these two transformations are represented by the matrices T and K ,

where T is the diagonal matrix with entries e
iπρ2

N and K is the matrix with entries

K(ρ,σ ) = N− 1
2

∏
p∈S

(
ιρσ
p − ι−ρσ

p

)
,

where ιp = exp(2iπ M
pαp ), denoting as M the inverse of M mod N .

Theorem 1. For every g̃ in the metaplectic group, lying above g ∈ G, set �
g̃
ρ = Met(g̃−1)�ρ , and let u ∈ S(R) be a

function with the same parity as the number #S. Denoting (abusively) as |〈�g
ρ ,u〉| the absolute value |〈�g̃

ρ ,u〉|, the
sum

∑
ρ∈RN

|〈�g
ρ ,u〉|2 only depends on the class Γ g. Moreover, one has

∑
ρ∈RN

∫
Γ \G

∣∣〈�g
ρ ,u

〉∣∣2
dg = 2π

3
N− 1

2 φ(N)‖u‖2
L2(R)

, (1)

where φ is Euler’s indicator function, and the Haar measure dg is normalized as in [2].

The polarized version of this equation shows that every function u ∈ S(R) with the appropriate parity can be
written as an integral superposition of distributions �

g̃
ρ , ρ ∈ RN : we may therefore consider this family as a family

of coherent states for the part of the metaplectic representation corresponding to the parity indicated by #S, though of
course the distributions in question do not lie in L2(R).

Given a distribution S ∈ S ′(R2), recall that the operator Op(S) with Weyl symbol S is the linear operator:
S(R) → S ′(R) defined by the equation

(
Op(S)u

)
(x) =

∫

R2

S

(
x + y

2
, η

)
e2iπ(x−y)ηu(y)dy dη.
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Theorem 2. Denote as 2iπE the operator x ∂
∂x

+ ξ ∂
∂ξ

+ 1 on the plane with coordinates (x, ξ). The distribution WN

which is the Weyl symbol of the operator u 
→ ∑
ρ∈RN

〈�ρ,u〉�ρ is given by the equation

WN = N iπE(
ζN(2iπE)

)−1
D0,

where

ζN(s) =
∏
p∈S

(
1 − p−s

)−1

and D0 is the standard Dirac comb, with support Z × Z, in the plane.

Assume that h ∈ S(R2) is a radial symbol: then, for any g̃ in the metaplectic group lying above some point g ∈ G,
the sum

∑
ρ∈RN

(�
g̃
ρ |Op(h)�

g̃
ρ ) depends only on z = g.i, the point of the upper half-plane Π which is the image of i

under the fractional-linear transformation associated to g, and we denote it as (Ah)(N)(z). Thanks to Proposition 1, the
function (Ah)(N) is automorphic with respect to the full modular group, and we now determine its spectral (Roelcke–
Selberg) decomposition. Towards this, we recall that the Eisenstein series is defined by analytic continuation with
respect to s from the equation

E(z, s) = 1

2

∑
m,n∈Z

(m,n)=1

( |m − nz|2
y

)−s

,

valid if Re s > 1, and we set E∗(z, s) = π−s�(s)ζ(2s)E(z, s), getting as is well-known a function meromorphic in
the s-plane with (simple) poles only at s = 0 or 1, invariant under the symmetry s 
→ 1 − s. On the other hand, we set
h(x, ξ) = H(x2 + ξ2) and

ψ(s) = 1

2π

∞∫
0

r−sH
(
r2)dr, Re s < 1.

Finally, we define the rescaled symplectic Fourier transformation G in the plane by the equation

(Gh)(y, η) = 2
∫

R2

h(x, ξ)e4iπ(yξ−xη) dx dξ :

then, even symbols invariant under G are exactly the symbols of operators which kill odd functions and transform
each function into an even one, while even symbols transforming to their negatives under G correspond to operators
doing precisely the opposite so far as parity is concerned.

Theorem 3. Under the conditions that precede, assume moreover that h = Gh if #S is even, and h = −Gh if #S is
odd. Then, one has

(Ah)(N)(z) = 2

∞∫
−∞

N− iλ
2

ζN(−iλ)

π
1−iλ

2

�( 1−iλ
2 )

ψ(iλ)E∗
(

z,
1 − iλ

2

)
dλ + (−1)#S φ(N)

N
1
2

h(0)

for every z ∈ Π . If, moreover, h(0) = 0, one has the identity

∥∥(Ah)(N)
∥∥2

L2(Γ \Π)
= 8

π

∥∥∥∥ζ(1 − 2iπE)

ζN(2iπE)
h

∥∥∥∥
2

L2(R2)

.

For the sake of comparison, let us mention the following non-arithmetic result: for z in the upper half-plane Π , set

uz(t) = 2
1
4 (Im z)

1
4 e−iπt2z̄,

u1
z(t) = 2

5
4 π

1
2 (Im z)

3
4 te−iπt2z̄,
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thus defining families of coherent states (in a usual sense, this time) for the even and odd parts of the metaplectic
representation. Given h ∈ S ′(R2), set

(Ch)0(z) = (
uz | Op(h)uz

)
,

(Ch)1(z) = (
u1

z | Op(h)u1
z

)
for every z ∈ Π . Then, if h is a G-invariant even symbol lying in L2(R2), also the image of some function in L2(R2)

by the operator 2iπE , the function (Ch)0 lies in L2(Π) and one has∥∥(Ch)0
∥∥

L2(Π)
= 2

∥∥�(iπE)h
∥∥

L2(R2)
.

If h is an even symbol lying in L2(R2) changing to its negative under G, the function (Ch)1 lies in L2(Π) and one has∥∥(Ch)1
∥∥

L2(Π)
= 4

∥∥�(1 + iπE)h
∥∥

L2(R2)
.

It is natural to ask what can remain of what precedes in the case when one replaces, say, the distribution deven by
the standard Dirac comb d0, supported in Z. To start with, one must replace the full modular group Γ by its subgroup
Γ2 generated by the matrices

( 1 0
2 1

)
and

( 0 1
−1 0

)
, which is conjugate within Γ to the Hecke subgroup generally denoted

as Γ0(2). As a fundamental domain of the action of that group in Π , one may take the set of points z such that |z| > 1
and |Re z| < 1: there are two cusps, the cusp a corresponding to the point i∞, and the cusp b corresponding to any
of the points ±1. There is no analogue of Theorem 1 in that case: the integral in place of the left-hand side of (1) is
divergent, which can be traced to the fact that the standard theta function (a holomorphic modular form of weight 1

2 )
is not parabolic.

Still, we may set (Bh)(z) = (Met(g̃−1)d0 | Op(h)Met(g̃−1)d0) if g̃ is a point of the metaplectic group lying above
some g ∈ G and z = g.i, and ask for the spectral decomposition of the Γ2-automorphic function Bh. Following the
method [1] of dealing with congruence subgroups, we set, for Re s > 1,

Ea(z, s) = 1

2

∑
(c,d)=1

cd≡0 mod 2

( y
2

|cz + d|2
)s

,

Eb(z, s) = 1

2

∑
(c,d)=1
c,d odd

(
y

|cz + d|2
)s

.

Theorem 4. Under assumptions relative to h identical to those of Theorem 3, also assuming that h = Gh and (for
simplicity) that h(0) = 0, one has

(Bh)(z) =
∞∫

−∞
ζ(1 − iλ)ψ(iλ)

[
2

3−3iλ
2 Ea

(
z,

1 − iλ

2

)
+ (

2 − 21−iλ)Eb

(
z,

1 − iλ

2

)]
dλ.

The results of the present Note are much easier to prove than those of [2], so far as analysis, at least, is concerned.
Of course, in the case when N = 12 or 4, it is easy to verify that they coincide with the special cases of the results
of [2] corresponding to the values ∓ 1

2 of τ . The proofs of the results contained in the two Notes will appear in a
volume Quantization and Arithmetic with Birkhäuser.
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