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Abstract

We consider the accumulated gains of geometric size in the St. Petersburg game and study the logarithmic tail asymptotics of
their distribution. To cite this article: G. Stoica, C. R. Acad. Sci. Paris, Ser. I 346 (2008).
© 2008 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Résumé

Grands gains dans le jeu de Saint Pétersbourg. Nous considérons des gains de taille géométrique accumulés dans le jeu de
Saint Pétersbourg et étudions le comportement asymptotique de la queue de leur distribution. Pour citer cet article : G. Stoica,
C. R. Acad. Sci. Paris, Ser. I 346 (2008).
© 2008 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction and results

A single trial of the St. Petersburg game consists in tossing a fair coin until it first lands heads and the player wins
2k dollars if this happens on the kth toss. Hence, if X is the gain at a single trial, we have

P
(
X = 2k

) = 2−k and P(X > c) = 2−[log2 c], (1)

for k = 1,2, . . . and c � 1, where log2 stands for the logarithm to the base 2, and [x] denotes the largest integer not
exceeding x.

Let (Xn)n�1 be i.i.d. random variables distributed like X, representing the player’s gains in a sequence of inde-
pendent repetitions of the St. Petersburg game. Although the expectation is seen to be infinite, for the total winnings
Sn = X1 + X2 + · · · + Xn in n games, Feller [5] proved that Sn/(n log2 n) → 1 in probability as n → ∞. It was
subsequently shown that, with probability one, the set of limit points of Sn/(n log2 n) is the interval [1,∞), cf. Chow
and Robbins [2] and Adler [1]. This result was refined by Martin-Löf [9] and Csörgő–Dodunekova [3], who identified
the class of subsequential distributional limits of Sn/n− log2 n, and by Csörgő and Simons [4] who showed that, with
probability one, Sn is asymptotic to n log2 n if the largest gains are ignored (i.e., the entry fee is fair except for the
largest gains). As shown in Vardi [11], this asymptotic equality is very rarely interrupted by a large gain that puts the
player ahead for a relatively short period.
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All these limit laws suggest finding the deviation rates of the accumulated gain Sn in the St. Petersburg game. Hu
and Nyrhinen [8] and Gantert [6] obtained the following result for the polynomial size gains, that easily implies the
deviation rate for Feller’s normalization, or the iterated logarithm normalization, as in Adler [1] or Vardi [11]: for
ε > 0 and b > 1, one has

lim
n→∞

log2 P(Sn > εxn)

log2 n
= 1 − b, (2)

where xn is any of the following sequences: nb, (n log2 n)b , (n log2 log2 n)b , n log2 n/(log2 log2 n)b−1.
However, formula (2) does not hold when xn increases faster than a polynomial; it is our purpose to give an answer

to this problem, by looking at geometric size deviations for the distributions of the accumulated gain. The asymptotics
in this case are rather different than (2), as we shall see in the following result:

Theorem 1. Let (Xn)n�1 be the player’s gains in independent St. Petersburg games and let Sn = X1 +X2 +· · ·+Xn.
Then, for ε > 0 and b > 1, we have

lim
n→∞

log2 P [Sn > εbn]
n

= − log2 b. (3)

Corollary 1. With the same notations as above, and if Mn = max{X1,X2, . . . ,Xn} denotes the maximal gain in n St.
Petersburg games, then

lim
n→∞

log2 P
[
Mn > εbn

]
n

= − log2 b.

1.1. Interpretation and application

Gains of geometric size were introduced by Martin-Löf [9] and Csörgő–Dodunekova [3]; they proved a central
limit theorem (CLT) along geometric subsequences bn such that the fractional part of log2(b

n) converges as n → ∞.
In the case b = 2, their CLT says that the premium per game 2m + n has only a small probability (� 1.8 × 2−m) of
being insufficient to cover the accumulated gains S2n . Our result says that gains of geometric size, as in the above
CLT, have probability of occurrence of order b−n. In addition, Corollary 1 quantifies Steinhaus’ solution to the St.
Petersburg paradox (cf. [10]). He proposed the following geometric sequence of entrance fees at the nth repetition of
a St. Petersburg game:

2 4 2 8 2 4 2 16 2 4 2 8 2 4 2 32 2 4 2 . . .

(place twos in alternating empty places, then fill every second empty place by a four, next fill every second remaining
place by an eight, etc.). Steinhaus [10] proved that, with probability one, the sequence of actual gains will have the
same distribution as the above sequence. Corollary 1 gives the precise tail asymptotics of Steinhaus’ sequence.

2. Proofs

In the sequel we denote by C a strictly positive constant whose value may differ from line to line, even within the
same line, and does not depend on n.

Lemma 1 (cf. Gut [7], Lemma 2.2). Let (an)n�1 be a sequence of real numbers such that 0 � an < C for n � 1. Then
(1 − an)

n → 1 as n → ∞ if and only if nan → 0 as n → ∞. In either case,

1 − (1 − an)
n � Cnan for n large enough.

Lemma 2. With the notations in Theorem 1 we have

lim
n→∞

log2 P [X > εbn]
log2(εb

n)
= −1.
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Proof. By (1) we have: 1/c � P(X > c) < 2/c for c � 1. Apply log2 in the latter inequalities, then divide by log2 c

and take c := εbn with n large enough so that c > 1; finally let n → ∞. �
Remark that sup{d > 0: E(Xd) < ∞} = 1; in particular E(X1/b) is finite for any b > 1, and we have the following:

Lemma 3 (cf. Hu and Nyrhinen [8], Lemma 3.2). Let b > 1 be fixed. Then, for any t, s > 0 and natural n � 1, we
have

P
(
Sn > tb

)
� nP

[
X >

(
t

s

)b]
+ esEsb(

X1/b
)(n

t

)sb

,

where E is the symbol for expectation under P .

Proof of Theorem 1. Let δ > 0 be fixed. By Lemma 2 we have

log2 P
[
X > εbn

]
� −(1 + δ) log2(εb

n) for large n. (4)

Recall that Mn = max{X1,X2, . . . ,Xn}; we deduce:

P
[
Sn > εbn

]
� P

[
Mn > εbn

]
as X,X1,X2, . . . are nonnegative

= 1 − {
1 − P

[
X > εbn

]}n as X,X1,X2, . . . are i.i.d.

� 1 − {
1 − [

εbn
]−1−δ}n for large n (using (4))

� Cn
[
εbn

]−1−δ for large n by Lemma 1 with an = [
εbn

]−1−δ
.

Apply log2 in the above inequalities and obtain:

log2 P
[
Sn > εbn

]
� C + log2 n − (1 + δ) log2

(
εbn

)
for large n;

as δ > 0 is arbitrary, the latter inequality gives

log2 P
[
Sn > εbn

]
� C + log2 n − n log2 b for large n;

divide by n and obtain

lim inf
n→∞

log2 P [Sn > εbn]
n

� − log2 b. (5)

On the other hand, let us take t = (εbn)1/b in Lemma 3; using again (1) we obtain for all n � 1:

P
[
Sn > εbn

]
� nP

[
X >

εbn

sb

]
+ esEsb(

X1/b
)( n

(εbn)1/b

)sb

� 2nsb

εbn
+ esEsb

(X1/b)

εsb/b

(
nb−n/b

)sb

.

Apply log2 in the latter inequality, use that log2(x + y) � 1 + max{log2 x, log2 y} for all x, y > 0, and deduce that,
for all n � 1, we have:

log2 P
[
Sn > εbn

]
� 1 + max

{
C + log2

(
nb−n

)
,C + sb log2

(
nb−n/b

)}
.

Further divide by n and obtain

lim sup
n→∞

log2 P
[
Sn > εbn

]
n

� lim sup
n→∞

1

n
· max

{
log2 n − n log2 b, sb

(
log2 n − n

b
log2 b

)}

= max

{
− log2 b,−sb log2b

b

}

= − log2 b (6)

(the last equality follows by letting s increase until the second term in the latter maximum becomes smaller than
− log2 b). Finally, relations (5) and (6) prove (3). �
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Proof of Corollary 1. As estimation from below of P [Mn > εbn] is already obtained just below formula (4), hence
we obtain formula (5) with Sn replaced by Mn. On the other hand, as Mn � Sn, as estimation from above of P [Mn >

εbn] is given by formula (6). The rest is straightforward. �
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