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Abstract

While linear conservations laws have a classical well-defined solution for sufficiently regular coefficients, it is not the case when
the coefficients are, for instance, discontinuous across a fixed hypersurface. In this case, another approach has to be proposed in
order to answer the double concern of existence and uniqueness of a solution to the problem. We will focus mainly on showing such
concerns can be solved by means of a small viscosity approach in 1-D scalar frameworks, in particular for expansive discontinuities
of the coefficient. The obtained small viscosity solution is also the solution in the sense Bouchut and James or LeFloch for scalar
equations. To cite this article: B. Fornet, C. R. Acad. Sci. Paris, Ser. I 346 (2008).
© 2008 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Résumé

Solution à petite viscosité de lois de conservations linéaires scalaires 1-D avec un coefficient discontinu. Pour des coeffi-
cients suffisamment réguliers, les lois de conservations linéaires ont un sens classique bien établi. Cela cesse cependant d’être le
cas lorsque les coefficients sont par exemple discontinus au travers d’une hypersurface fixée. Dans ce cas de figure, une autre ap-
proche doit être proposée pour répondre à la double préoccupation de l’existence et de l’unicité d’une solution au problème. Notre
but va être principalement de montrer que, dans des cas scalaires 1-D, une approche à viscosité évanescente permet de répondre à
ces préoccupations, en particulier dans le cas d’une discontinuité expansive du coefficient. Pour citer cet article : B. Fornet, C. R.
Acad. Sci. Paris, Ser. I 346 (2008).
© 2008 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Version française abrégée

Dans cette Note, nous nous focalisons sur un problème hyperbolique scalaire écrit sous forme conservative en une
dimension d’espace. Ce problème a une discontinuité du coefficient a localisée sur une interface d’équation x = 0,

ce qui fait qu’il n’a pas de solution classique ou, en tout cas, pas de solution classique unique. Selon le signe du
coefficient dans un voisinage de l’interface, supposée non-caractéristique, nous donnons la solution à petite viscosité
du problème dans les différents cas de figure possibles. Nous esquissons la preuve du résultat dans le cas expansif qui
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est tout particulièrement intéressant. Ensuite nous parlons d’autres résultats obtenus, toujours par le biais d’approches
à petite viscosité, dans le cas de systèmes. Le comportement de la solution à petite viscosité de l’analogue non-
conservatif du cas expansif développé ici est très intéressant mais nous ne le développerons pas dans cette note. En
particulier, une perte de régularité de la solution à petite viscosité par rapport aux données apparaît dès que plusieurs
dimensions d’espaces sont présentes [6].

1. Introduction and notations

In this note, we are interested in the small viscosity solution of the following hyperbolic problem with discontinuous
coefficients P(Lc,f,h):

P(Lc,f,h):
{

Lcu = f (t, x), (t, x) ∈ (0, T ) × R,

u|t=0 = h,

where the operator Lc is of the form ∂t + ∂x(a(t, x).), with the restriction of the coefficient a to the half spaces
{x > 0} and {x < 0} belonging to the set of infinitely derivable functions bounded as well as their derivatives. Without
imposing any corner compatibility assumptions, the functions f and h are simply assumed to belong to the set of
infinitely derivable functions with compact support. We introduce the viscous regularization of the operator: Lε

c :=
Lc − ε∂2

x . Although P(L,f,h) has no obvious classical sense, for fixed positive ε, the problem P(Lε
c, f,h) has a

unique classical solution which is continuous over (0, T ) × R. This paper is devoted to the investigation of the small
viscosity solution of P(L,f,h) obtained as limε→0+ uε. Such an approach has been used by the authors in [8] in
the neighboring framework of shockwaves study. Sueur worked on the neighboring question of the approximation of
discontinuous solution by viscous approaches in [12]. We recover the notion of solution proposed by LeFloch [9] and
Bouchut, James [1,2] when the function f is equal to zero. We insist, as for instance did LeFloch in [9], about the
link between P(Lc,f,h) and the nonconservative problem P(Lnc,F,H) where Lnc = ∂t + a(t, x)∂x : if f = ∂xF

and g = ∂xG then u is obtained by derivation with respect to x of the solution v of P(Lnc,F,H). The same remark
holds for the viscously perturbed equations, denoting by Lε

nc := Lnc − ε∂2
x , uε can be obtained as the derivative with

respect to x of P(Lε
nc,F,H), vε which belongs to C1((0, T ) × R). We refer to the work of Dal Maso, LeFloch and

Murat [3] on nonconservative products, which clarifies the sense to give to P(Lnc,F,H) hence inducing a sense to
give to the “dual” problem P(Lc,f,h).

For fixed positive ε, P (Lε
c, f,h) can be viewed as a transmission problem: the equation is satisfied on the half-

spaces {±x > 0} and the quantities uε and auε −ε∂xu
ε are conserved through the interface {x = 0}. Assuming that the

coefficient does not vanish in a neighborhood of {x = 0}, three cases arise naturally for the problem at hand depending
on the behavior of the interface. Theorem 1.1 immediately below states the small viscosity solution selected by our
approach in each case:

Theorem 1.1.

(i) For a compressive interface, which means that signa(t, x) = − sign(x) in a neighborhood of {x = 0}, uε con-
verges in the sense of distributions towards a measure-valued solution u of the form uL1x<0 + uR1x>0 +
C(t)δx=0, where both uL and uR are in L2, C is a known continuous function of t and δ stands for the Dirac
measure. This recovers the result of Poupaud and Rascle [11] when f = 0.

(ii) For a traversing interface, which means that signa|x=0+ = signa|x=0− , uε converges in L2 towards the solution
of the transmission problem satisfying the equation on each side of the boundary and the Rankine–Hugoniot
condition stating that the flux a · u is conserved through {x = 0}.

(iii) For an expansive interface, which means that signa(t, x) = sign(x) in a neighborhood of {x = 0}, uε converges
in L2 towards the solution of the transmission problem satisfying the equation on each side of the boundary and
two transmission conditions sating that both the solution u and the flux a · u are conserved through {x = 0}.

This paper is mainly devoted to the proof of Theorem 1.2 which is a sharpened version of point (iii) in Theorem 1.1.
Note that this point is the most troublesome to treat as far as uniqueness of the solution is concerned. In what follows,
R subscripts [resp. L subscripts] will be used for denoting restrictions to the domain {x > 0} [resp. {x < 0}]:
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Theorem 1.2. Let u be defined as the solution of the transmission problem:⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂tuR + ∂x(aRuR) = fR, {x > 0},
∂tuL + ∂x(aLuL) = fL, {x < 0},
uR|x=0 = uL|x=0 = 0, ∀t ∈ (0, T ),

uR|t=0 = hR,uL|t=0 = hL.

(1)

There is C > 0 such that, for all 0 < ε < 1, there holds:

‖uε − u‖L∞([0,T ]:L2(R)) � Cε1/4.

2. Sketch of proof of Theorem 1.2

Let ΩR be (0, T ) × R
∗+. Consider now the vector field defined through: (t, x) �→ ∂t + aR(t, x)∂x. We will denote

by ΓR the characteristic curve passing through t = 0, x = 0 and tangent to this vector field. A parametrization of ΓR

is given by: ΓR = {(t, xR(t)), t ∈ (0, T )}, where xR is the solution of the equation:⎧⎨
⎩

dxR

dt
(t) = aR

(
t, xR(t)

)
, t ∈ (0, T ),

xR(0) = 0.

Let us denote by ãR an arbitrary smooth extension of aR to {x < 0}. We define then ϕR as the solution of:{(
∂t + ãR(t, x)∂x

)
ϕR = 0, (t, x) ∈ (0, T ) × R,

ϕR|t=0 = x.

The obtained ϕR is in C∞((0, T ) × R). Moreover, we have: ΓR = {(t, x) ∈ ΩR: ϕR(t, x) = 0}. ΩL, ΓL and ϕL are
defined in a symmetric way and there holds: ΓL = {(t, x) ∈ ΩL: ϕL(t, x) = 0}. Note well that, by construction of ϕL

and ϕR, we have:

Lemma 1. There is c such that, for all (t, x) ∈ ΓR, there holds:∣∣∂xϕR(t, x)
∣∣ � c > 0,

∣∣∂xϕL(t, x)
∣∣ � c > 0.

We note for instance:

Ω+
L = {

(t, x) ∈ ΩL: ϕL(t, x) > 0
}
,

where the “L” stands for “on left-hand side of ΓL” and the + is related to the sign of ϕL(t, x). We define in the same
manner: Ω−

L , Ω+
R and Ω−

R .

We will begin by constructing an approximate solution of the viscous problem viewed as a transmission problem.
We perform the construction of an approximate solution separately on the four domains Ω−

L , Ω+
L , Ω+

R and Ω−
R . We

will denote by uε
app,L,+ the restriction of uε

app to Ω+
L and so on. Let us present the different profiles and their ansatz:

uε
app,L,+(t, x) =

M∑
n=0

(
UL,n,+(t, x) + Uc

L,n,+
(

t,
ϕL(t, x)√

ε

))
εn/2,

where the profiles Un,L,+ belong to H∞(Ω+
L ) and the characteristic boundary layer profiles Uc

n,L,+(t, x, θL) belong to

e−δ|θL|H∞((0, T )×R
∗+), for some δ > 0. We will take a similar ansatz for uε

app,L,−, uε
app,R,− and uε

app,R,+ over their
respective domains. We begin by constructing the underlined profiles Un by induction, the boundary layer profiles Uc

n

are then computed as a last step. A good reference about the computation of characteristic boundary layer profiles is
[7] by Guès. We construct our profiles such that, for all fixed ε > 0, uε

app belongs to C1([0, T ] × R). In what follows,
we will note:

UR,j (t, x) := UR,j,+(t, x)1(t,x)∈Ω+ + UR,j,−(t, x)1(t,x)∈Ω− ,

R R
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and:

Uc
R,j

(
t, x,

ϕR(t, x)√
ε

)
:= Uc

R,j,+
(

t,
ϕR(t, x)√

ε

)
1(t,x)∈Ω+

R
+ Uc

R,j,−
(

t,
ϕR(t, x)√

ε

)
1(t,x)∈Ω−

R
.

Actually, Uc
R,j is piecewise constant with respect to x on each side of ΓR, which explains that Uc

n,L,+ and Uc
n,L,−

have no direct dependency in x. Of course, there holds: uR := UR,0 and uL := UL,0.

Plugging uε
L,app and uε

R,app in the viscous problem and identifying the terms with the same scale in ε, give the pro-
files equations: the function u := uR,−1Ω−

R
+uR,+1Ω+

R
+uL,−1Ω−

L
+uL,+1Ω+

L
which is also the 0th order underlined

profile is defined by the following well-posed problems:⎧⎪⎨
⎪⎩

∂tuR,− + ∂x(aRuR,−) = fR,−, (t, x) ∈ Ω−
R ,

∂tuL,+ + ∂x(aLuL,+) = fL,+, (t, x) ∈ Ω+
L ,

uL,+|x=0 = uR,−|x=0 = 0,

and uR,+ [resp. uL,−] satisfies the awaited Cauchy problem on the open set Ω+
R [resp. Ω−

L ]. If j ∈ N is an odd number
we have both UR,j = 0 and UL,j = 0. On the other hand for j ∈ N

∗ an even number, the profiles are computed by
induction on even numbers as follows:⎧⎪⎪⎪⎨

⎪⎪⎪⎩

∂tU2n,R,− + ∂x(aRU2n,R,−) = ∂2
x U2n−2,R,−, (t, x) ∈ Ω−

R ,

∂tU2n,L,+ + ∂x(aLU2n,L,+) = ∂2
x U2n−2,L,+, (t, x) ∈ Ω+

L ,(
U2n,L,+|x=0

U2n,R,−|x=0

)
= M−1

(
0

−(∂xU2n−2,R,−|x=0 − ∂xU2n,L,+|x=0)

)

where

M :=
(

1 −1

aL|x=0 −aR|x=0

)
;

this matrix is nonsingular since aL|x=0 − aR|x=0 < 0, and U2n,R,+ [resp. U2n,L,−] is the solution of Cauchy problem
on the open set Ω+

R [resp. Ω−
L ] with a vanishing as initial data and ∂2

x U2n−2,R,+ [resp. ∂2
x U2n−2,L,−] as source term.

In conclusion, all the profiles Un have now been constructed inductively.
We turn to the construction of the characteristic boundary layer profiles. Since their construction is analogous on

each side of {x = 0}, we will restrict ourselves to the construction of the profiles Uc
R,j,±(t, θR). The notation [θ ]Γ

will be used for the jump of θ through the hypersurface Γ.

Before going further, we recall that xR(t) is the unique x such that (t, x) ∈ ΓR. Because uε
app belongs to C1((0, T )×

R
∗), for all 0 � j � M, we have:[

Uc
R,j

]
R

= −[UR,j ]ΓR
.

Let [UR,j ]ΓR
be given, for all t ∈ (0, T ), by:

[UR,j ]ΓR
(t) = lim

x→xR(t), x>xR(t)
UR,j,+(t, x) − lim

x→xR(t), x<xR(t)
UR,j,−(t, x)

and [Uc
R,j ]R be defined, for all t ∈ (0, T ), by:[
Uc

R,j

]
R
(t) = lim

θR→0+ Uc
R,j,+(t, θR) − lim

θR→0− Uc
R,j,−(t, θR).

For all 0 � j � M, taking as a convention that the profiles indexed with a negative subscript vanishes, the profiles
Uc

R,j,+ and Uc
R,j,− are given by:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂tU
c
R,j,+ − (∂xϕR)2∂2

θR
Uc

R,j,+ + (∂xaR)Uc
R,j,+ = (

∂2
xϕR

)
∂θR

Uc
R,j−1,+, t ∈ (0, T ), {θR > 0},

∂tU
c
R,j,− − (∂xϕR)2∂2

θR
Uc

R,j,− + (∂xaR)Uc
R,j,− = (

∂2
xϕR

)
∂θR

Uc
R,j−1,−, t ∈ (0, T ), {θR < 0},[

Uc
R,j

]
R
(t) = −[UR,j ]ΓR

, ∀t ∈ (0, T ),

[
∂θR

Uc
R,j

]
R
(t) = − 1

2(∂xϕ)|x=xR(t)

([
∂xUR,j−1(t)

]
ΓR

(t) + [
∂xU

c
R,j−1(t)

]
R

)
, ∀t ∈ (0, T ),

Uc
R,j,+|t=0 = 0,

Uc |t=0 = 0.
R,j,−



B. Fornet / C. R. Acad. Sci. Paris, Ser. I 346 (2008) 681–686 685
The equations just described are well-posed since, by a change of unknowns, they can be formulated as classical heat
equations.

We will now sketch the proof of the stability estimates.
We define the error wε := uε

app − uε. By linearity wε is the solution of P(Lε, εMRε,0); where Rε belongs to

L∞([0, T ] : L2(R)). Multiplying by the solution and integrating by parts separately for {x > 0} and {x < 0}, then
using the transmission conditions on the boundary and Gronwall lemma, we get:

‖wε‖2
L2(R)

(t) � 1

2
εM

T∫
0

eC(t−s)‖Rε‖2
L2(R)

(s)ds.

Constructing the profiles up to order M = 1, we obtain that there is c > 0, independent of ε, such that:

‖wε‖2
L∞([0,T ]:L2(R)

) � cε,

thus achieving our proof.

3. Some remarks and perspectives

The kind of method used here can also be employed for linear hyperbolic systems in conservative or nonconserv-
ative forms. For scalar equations, depending on the setting of the discontinuity (see Theorem 1.1), energy estimates
are not obtained by the same means. For systems, stability estimates for the problem are much less straightforward
to obtain. In general, we can proceed by construction of a pseudodifferential Kreiss-type symmetrizer [10,8] when a
geometric condition of stability is checked for the viscously perturbed problem (uniform Evans condition). In the non-
conservative framework, some partial results have been given for systems in [4] and [5]. On one hand, the case where
there are only compressive and traversing modes in the discontinuities of the coefficients is rather well understood
(results given in multi-D and for piecewise smooth coefficients in [5]). On the other hand, many questions remain
unsolved when expansive modes are also present. One question concerns the construction of an approximate solution
for 2 × 2 systems when an expansive mode is coupled with a compressive one. Another is to generalize the results
of [4] to several space dimensions. This last question is very interesting as new phenomena appears in multi-D, when
expansive modes are present as shown in [6], for a scalar case.

In both [5] and [4], in a precise framework, the author shows the existence, uniqueness and stability of a small
viscosity solution for linear nonconservative hyperbolic problems with one fixed discontinuity of the coefficient.
Remark that, in the case of systems, the selected small viscosity solution depends of the chosen viscous perturbation
of the operator.

Proving Theorem 1.2, we expose the core of our approach without requirement of elaborate tools. We can hope of
getting a better understanding of hyperbolic systems with discontinuous coefficients by observing which solution is
selected through a viscous approach.
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