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Abstract

It is shown that the Fourier transform is essentially, up to a simple adjustment, the only transform on the corresponding space
which maps convolutions to products and products to convolutions (surprisingly, no linearity is assumed a priori). To cite this
article: S. Alesker et al., C. R. Acad. Sci. Paris, Ser. I 346 (2008).
© 2008 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Résumé

Une caractérisation de la transformation de Fourier et questions connexes. On montre que la transformation de Fourier
est essentiellement, a une simple adaptation pres, la seule application, qui sur les espaces ou elle opere, transforme les convolu-
tions en produits et les produits en convolutions. (De maniére surprenante la linéarité n’est pas supposée a priori.) Pour citer cet
article : S. Alesker et al., C. R. Acad. Sci. Paris, Ser. I 346 (2008).
© 2008 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

To state the various results we need to recall first some well known definitions and simple observations. For a ref-
erence on the standard definitions and results stated below, see e.g. [3], the elementary introduction to the subject [5],
or the more advanced [4].

One says that an infinitely smooth function f:R" — C is rapidly decreasing (also called Schwartz function) if for

any / € Z4 and any multi-index « = («q, ..., o) of non-negative integers one has
0% f(x
sup ﬁ(l +1x[")| < o0,
xeRn 8x°‘
P f) . af N
where as usual 5 = PR loe] =37 i

The space of all complex valued rapidly decreasing functions on R” is denoted by S, and is called the Schwartz
space.
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The space S becomes a Fréchet space when equipped with the system of norms:

8“f(x)(1 +1x 1Y)

0x%

Iflln :=SUP{

‘xeR",lod iN}.
One of the main properties of the Schwartz space S is that the Fourier transform F: S — S, defined by,

FF)E) = f Fle2mites) g,
Rn

is a linear topological isomorphism.
The space S has two structures of algebra given by the point-wise product and the convolution:

2SxS8—S,
*SxS—S.

Both operations are continuous with respect to both arguments simultaneously.
Let S’ be the topological dual of S. Elements of S’ are called distributions of tempered growth. We have the
canonical continuous map S — S’ given by:

b, f) = / FO0é () dx.
Rn

This map is injective and has a dense image in the weak topology. We will identify S with its image in S’: S C §'.
The following claim is well known:

Claim 1. Let S be equipped with the above Fréchet topology, and S’ be equipped with the weak topology.

(1) The point-wise product on S extends (uniquely) to a separately continuous map S x S’ — S’ which is given
explicitly by,

(@9 f)=(o-¥. 1)

forany f €8, ¢, €S. Then S’ becomes a module over S.
(ii) The convolution on S extends (uniquely) to a separately continuous map S x 8’ — S’ which is given explicitly
by,

(@, ¥+ f)=(¢* (=1D)*y, f),

forany f €S8',¢,¥ €8. Then S" becomes a module over S. (Here (—1d)* denotes the operator defined by
(=1)*¥)(x) =¥ (—x).)

(iii) The Fourier transform extends (uniquely) to an isomorphism of linear topological spaces F:S'>S'. Moreover
F is an isomorphism of S-modules: forany ¢ € S, f € S/,

F(¢- f)=F@) «F(f),
F(¢ = f)=F@)-F(f).

For a proof see [3], Chapter 2.
To give a sample of our main results, we start with one which is not the strongest, but which we find to be a true
‘characterization of the Fourier transform’:

Theorem 2. Assume we are given a bijective transform F : S — S which admits an extension F' : ' — S’ which
is also bijective, and such that for every f € S and g € 8’ we have F'(f - g) = (F f) * (F'g). Assume also that
F'o F' = (=1d)* (that is, for every f € S, F'(F'(f)(x) = f(—x)).

Then, there exists B € GL,(R) with B = B* and |det(B)| = 1 such that either for every f € S, Ff =F(f o B),
or, forevery f €S, Ff =F(f o B).
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In particular we see that the theorem implies that a transform satisfying the condition must be linear and continuous
(in any reasonable sense) which we did not assume a-priori.

Note that if we add the assumption that F' o F’ = (—Id)*, then conditions implies that not only are products
mapped to convolutions, but also vise-versa. Thus, with this formally stronger condition, the theorem would be a
consequence of the following:

Theorem 3. Assume we are given a bijective transform F : S — S which admits an extension F' : 8’ — S’ which is
also bijective, and such that

1. Forevery f €eSand g €S we have F'(f x g) = (F f) - (F'g),
2. Forevery f € Sand g €S we have F'(f - g) = (Ff)* (F'g).

Then, F is essentially the Fourier transform F, that is, for some B € GL,(R) with |det(B)| = 1, we have either for
all f that F(f) =F(f o B) or forall f that F(f) =F(f o B).

This result, in turn, follows from the next one:

Theorem 4. Assume we are given a bijective transform T : S — S which admits a bijective extension T' : S’ — S’
such that

1. Forevery feSand ge S wehave T'(f xg) = (T f) x(T'g),
2. Forevery feSandgeS wehave T'(f -g)=(T f)-(T'g).

Then, forall f € S we have T f = f o B, or forall f we have T f = f o B, for some B € GL,(R) with |det(B)| = 1.

Let us denote by Sk the Schwartz space of real valued rapidly decreasing functions, and by Sy, its (real) topological
dual. We have the following result:

Theorem 5. Assume we are given a bijective transform T : Sg — Sg which admits an extension T' : Sp, — Sy, which
also bijective, and such that for every f € Sg and g € Sp we have T'(f - g) = (T f) - (T'g).
Then, there exists some diffeomorphism u : R" — R”" such that for all f € Sg, T f = f ou.

It turns out that one can prove the following modified version of Theorem 5 along exactly the same lines: every-
where the space of rapidly decreasing functions Sg can be replaced with the space of compactly supported real valued
smooth functions Dg, and the space S, can be replace by the dual space Dp,. With this modification, Theorem 5 can
be generalized to arbitrary smooth manifolds instead of R” as follows.

Let X be a smooth manifold. Let Dr(X) denote the space of compactly supported infinitely smooth R-valued
functions on X. Let Mp(X) denote the space of compactly supported infinitely smooth R-valued measures on X.
The space MRp(X) is equipped with the standard linear locally convex topology (which is inductive limit of
Fréchet spaces). Let D]/R(X ) denote the (real) topological dual of MR(X). Then we have a natural imbedding
Dgr(X) = Dp(X) with dense image in the weak topology given by,

fr [qs - [ 4
X
Naturally Dg (X) is a Dr(X)-module.

Theorem 6. Let 7:Dr(X) — Dr(X) be a bijective (not necessarily linear or/and continuous) map which admits a

bijective extension T: Dy (X) — Dy (X) such that for every f € Dr(X) and g € Dp(X) one has
T(f-8)=Tf)-(Tg.

Then there exists a C*°-diffeomorphism u: X — X such that T f = f ou for all f € Dr(X).



628 S. Alesker et al. / C. R. Acad. Sci. Paris, Ser. I 346 (2008) 625-628

Note that in each of the results above, linearity of the transform 7 is not assumed a-priori, but is a consequence of
the multiplicativity assumption.

Let us briefly comment on where these theorems originated from. For reasons connected with the topic of convex
analysis, we were interested in the characterization of a very basic concept in convexity: duality and the Legendre
transform. In the paper [1] it was shown that the Legendre transform can be characterized as follows: up to linear
terms, it is the only involution on the class of convex lower semi-continuous functions on R” which reverses the
(partial) order of functions. Since the Legendre transform has another special property, namely that it exchanges
summation of functions with their inf-convolution (for definitions and details see [2]), this in fact implied that an
involution on lower semi-continuous convex functions which reverses order must have this special property. It turns
out that also the opposite is true, namely any involutive transform (on this class) which exchanges summation with
inf-convolution, must reverse order, and, in fact, be up to linear terms the Legendre transform (see [2] for proofs and
a discussion). Thus, already at this stage we observed that very minimal basic properties essentially uniquely define
some classical transform which traditionally is defined in a concrete, and quite involved form.

It looks very intriguing to determine how far this point of view can be extended. It turns out that also the classical
Fourier transform may be defined essentially uniquely by very minimal and basic conditions, namely by the condition
of exchanging convolution with product (together with, for example, the form of the square of the transform). This is
what we announced in this paper. The methods of proof are different (for Legendre transform convexity is used very
strongly), but the ideology is similar, although in the case of Fourier transform the proofs seem to be, for the moment,
more involved.
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