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Abstract

We bound the j -invariant of integral points on a modular curve in terms of the congruence group defining the curve. We apply
this to prove that, under the GRH, the modular curve Xsplit(p

5) has no non-trivial rational point if p is a sufficiently large prime
number. To cite this article: Yu. Bilu, P. Parent, C. R. Acad. Sci. Paris, Ser. I 346 (2008).
© 2008 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Résumé

Invariants j entiers et structures de Cartan de courbes elliptiques. On borne l’invariant j des points entiers des courbes
modulaires, en fonction du groupe de congruence définissant la courbe. Sous l’hypothèse de Riemann généralisée, on en déduit
que, si p est un nombre premier suffisamment grand, la courbe modulaire Xsplit(p

5) n’a pas de point rationnel non trivial. Pour
citer cet article : Yu. Bilu, P. Parent, C. R. Acad. Sci. Paris, Ser. I 346 (2008).
© 2008 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

Let N � 3 be an integer and Γ̄ a subgroup of GL2(Z/NZ) such that det(Γ̄ ) = (Z/NZ)∗. We set Γ � SL2(Z) to
be the pull-back of Γ̄ and XΓ the corresponding proper modular curve over Q, as defined in [10]. We consider the
set of integral points YΓ (Z), consisting of those P ∈ XΓ (Q) for which j (P ) ∈ Z, where j is, as usual, the modular
invariant. We denote by C the set of cusps of XΓ (Q̄).

Theorem 1.1. Assume that Gal(Q/Q) does not act transitively on C. Then for P ∈ YΓ (Z) we have log |j (P )| �
21N2|Γ̄ | + 90N .

We remark that this estimate is certainly not best possible for the method. Besides refining the constants, one can
probably obtain an estimate of shape log |j (P )| = O(p−1N2|Γ̄ | logp), where p is the smallest prime divisor of N .
This would allow us to replace p5 by p4 in Theorem 1.2.

We then apply this result to the curve Xsplit(p)(Q), for a prime p, where for n � 0 the curve Xsplit(p
n) corresponds

to a group Γ which is the normalizer of a split Cartan subgroup mod pn, i.e. a group conjugate to that of diagonal and
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antidiagonal matrices mod pn. We are motivated by a question of Serre [8]: does there exist an absolute constant C

such that for any non-CM elliptic curve E over Q and any prime p > C the natural Galois representation Gal(Q/Q) →
GL(E[p]) is surjective? One knows that it suffices for a positive answer to bound the primes p such that a non-
CM curve has a Galois structure included in the normalizer of a (split or non-split) Cartan subgroup of GL(E[p]).
Equivalently, one would like to prove that, for large p, the only rational points of Xsplit(p) and Xnonsplit(p) are the
cusps and CM points. In the present Note we prove the following:

Theorem 1.2. Assume the Generalized Riemann Hypothesis for zeta functions of number fields (GRH in the sequel).
Then for large enough prime p, every point in Xsplit(p

5)(Q) is either CM or a cusp.

More general results (with more detailed proofs) will appear in [1]. After this note was submitted we noticed that, at
the expense of replacing p5 by a higher power (probably p9), the GRH-assumption in Theorem 1.2 can be suppressed,
using the isogeny estimate of Masser and Wüstholz [5] (which, as the referee indicated to us, has been made explicit
by Pellarin [7]). This will also be addressed in [1].

2. Proof of Theorem 1.1

Put AN = (N−1Z/Z)2 \ {0}. Fix a = (a1, a2) ∈ AN and let ga :H → C be the corresponding Siegel function
[4, Section 2.1]. Then g12N

a defines a Q(ζN)-rational function on the curve X(N), having all its zeros and poles
at the cusps (a modular unit). Further, since det(Γ̄ ) = (Z/NZ)∗, the expression ua = ∏

γ∈Γ̄ g12N
aγ defines a Q-rational

modular unit on XΓ .
Theorem 1.1 is proved by a variation of Runge’s method (see [2] for a general discussion), adapted to modular

curves. It is a direct consequence of the following two statements:

Proposition 2.1 (an analytic estimate). Assume that Gal(Q/Q) does not act transitively on C. Then for any P ∈ YΓ (C)

either |j (P )| � 10N+2 or there exists a ∈ AN such that
∣∣log

∣∣ua(P )
∣∣∣∣ � N−1 log

∣∣j (P )
∣∣ − (

12N |Γ̄ | + 90
)
.

Proposition 2.2 (an arithmetic estimate). For every P ∈ YΓ (Z) and every a ∈ AN we have 1 � |ua(P )| � 212|Γ̄ |N .

The proofs of these propositions use the three lemmas below. Let H be the Poincaré upper half-plane. Recall that
XΓ (C) is analytically isomorphic to H̄/Γ , where H̄ = H ∪ Q ∪ {i∞}. For τ ∈ H put, as usual, qτ = exp(2π iτ). By
abuse of notation, we denote by j also the modular j -invariant on H. Let D be the familiar fundamental domain of
SL2(Z) (the hyperbolic triangle with vertices eπi/3, e2πi/3 and i∞, together with the geodesic segments [i, e2π i/3] and
[e2π i/3, i∞]).

Lemma 2.3. For any τ ∈ D we have either |j (τ )| � 14 000 or |qτ | � 0.001. If |qτ | � 0.001, then | log |j (τ )qτ || �
900|qτ |.

The proof is by straightforward estimates using the standard q-expansions for the modular invariant. See [1] for
the details.

Let �a be the order of vanishing of ga at i∞; that is, the only rational number such that the limit limτ→i∞ q
−�a
τ ga(τ )

exists and is non-zero.

Lemma 2.4.

(i) Assume that a1 �= 0. If |qτ | � 10−N then | log |ga(τ )| − �a log |qτ || � 3|qτ |1/N .
(ii) Assume that a1 = 0. If |qτ | � 0.1 then | log |ga(τ )| − �a log |qτ | − log |1 − exp(2π ia2)|| � 3|qτ |.

The proof again uses estimates coming out of the q-product expansion for ga, as in [4, page 29]. See [1] for the
details.
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Lemma 2.5. Assume that a ∈ AN is of exact order N ′. Then the functions ga and
(
1 − ζN ′)g−1

a are integral over Z[j ].

For the proof see [4, Sections 2.1 and 2.2], especially Lemma 2.1 and Theorem 2.2 therein. Though the statement
of this theorem is formally weaker than our statement, what Kubert and Lang actually prove is exactly what we need.

Proof of Proposition 2.1. The statement of Proposition 2.1 is stable if one replaces Γ by the subgroup obtained by
conjugating by μ ∈ SL2(Z), and P by P μ in the conjugate modular curve. Since there exists μ such that P μ is the
image of an element of D, one can assume that P is the image of an element τ ∈ D.

By [4, Theorem 2.3.2], when a runs through AN , the principal divisors (ua) generate a finite index subgroup of the
group of Q-rational divisors of degree 0 supported on C. Since C has at least two orbits under the action of the Galois
group, there exist Q-rational divisors of degree 0 supported on C and whose support contains the cusp c∞, the image
of i∞ in XΓ . Hence there exists a ∈ AN such that ord∞(ua) �= 0. Fix this a and estimate |ua(P )| = |ua(τ )| where,
with a common abuse of notation, we view ua as a function on H as well.

Using Lemma 2.4 (where we may assume that |qτ | � 10−N , because otherwise Lemma 2.3 implies |j (P )| �
10N+2), we find log |ua(τ )| = ordc∞(ua) log |qτ |1/e + R, where e is the ramification index of the covering XΓ →
XSL2(Z) at c∞ and |R| � 12N |Γ̄ |(3|q|1/N + log 2) � 12N |Γ̄ |. Here we bound by log 2 each term of the type
log |1 − exp(2π ia2)| coming from the second part of Lemma 2.4. Using that ordc∞(ua) �= 0 and e � N , we obtain
| log |ua(τ )|| � N−1 log |q|−1 − 12N |Γ̄ |, and we complete the proof using Lemma 2.3. �
Proof of Proposition 2.2. Since P is not a cusp, we have ua(P ) �= 0. Since ua ∈ Q(XΓ ), we have ua(P ) ∈ Q. Fur-
ther, Lemma 2.5 implies that ua is integral over the ring Z[j ], which implies that ua(P ) is integral over Z, whence
ua(P ) ∈ Z. This proves that |ua(P )| � 1.

Applying Lemma 2.5 again, we find in the similar fashion that �ua(P )−1 ∈ Z[ζN ], where � is a product of at most
|Γ̄ | factors of the type (1 − ζN ′)12N , with N ′|N . Taking the norm, we find ua(P )ϕ(N) divides NQ(ζN )/Q(�), which is
a product of at most |Γ̄ | factors of the type NQ(ζN )/Q(∞− ζN ′)∞∈N . Every such factor divides (N ′)12Nϕ(N)/ϕ(N ′).
Since (N ′)1/ϕ(N ′) � 2, the result follows. �
3. Proof of Theorem 1.2

In this section p is a prime number, n � 1 is an integer, and E is a non-CM elliptic curve over Q such that the
image of Gal(Q/Q) in GL(E[pn]) 	 GL2(Z/pnZ) is the normalizer of a split Cartan subgroup mod pn as defined in
the introduction. We denote by NE the conductor of E. Note that if E′ is any (quadratic) twist of E, then the image
of Gal(Q/Q) in GL(E′[pn]) is again the normalizer of a split Cartan subgroup.

Proposition 3.1. Assume GRH. For any ε > 0 there exists an absolute effective constant γε such that, when p > γε ,
we have pn � (logNE)1+ε .

Proof. This is a straightforward generalization of an argument of Halberstadt and Kraus [3], which makes use of
Serre’s explicit version of Chebotarev’s theorem [9]. It follows from Mazur’s celebrated theorem on rational isogenies
that the image of GQ in GL(E[pn](Q)), which is in the normalizer N of a Cartan subgroup C by assumption, is not
included in C itself. Let χ be the quadratic character of Gal(Q/Q) defined by N/C. Let E′ by the twist of E by χ .
The conductors of E′ and E are equal by [3, Théorème 1].

For any prime number � not dividing pNE , the traces a�(E) and a�(E
′) of a Frobenius substitution Frob� at the

place � acting on the p-adic Tate modules of E and E′ satisfy a�(E) = a�(E
′)χ(�). Since E has no CM, the curves E

and E′ are not isogeneous. Let � be the smallest prime number not dividing NE such that a�(E) �= a�(E
′). Assuming

GRH, it satisfies � � c(logNE)2(log log 2NE)12, where c is an absolute constant, by Théorème 21 of [9]. Moreover
one has a�(E) �= 0 and χ(�) = −1, i.e. Frob� ∈ N \ C, which implies that a�(E) ≡ 0 modpn. Now Hasse’s bounds
imply that pn � 2

√
�, which yields the conclusion of the proposition. �

Proof of Theorem 1.2. Let P be a non-CM non-cuspidal point in Xsplit(p
n)(Q), giving rise to an elliptic curve E.

As P induces a point in Xsplit(p)(Q), it follows from results of Momose and Merel that, if p > 13, then j = j (E)

belongs to Z, cf. [6, Theorem 3.1]. Replacing E, if necessary, by a quadratic twist, we may assume that, if � � 5 is a
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prime number dividing NE , then � divides1 either j or j − 1728. The curve E has potentially good reduction at all
primes, so val�(NE) = 2, and the exponents of the conductor at 2 and 3 are at most 8 and 5 respectively. Therefore
NE � 28 · 35 · j2(j − 1728)2.

Now applying Theorem 1.1 to the curve Xsplit(p) (which has two Galois orbits of cusps) we obtain log |j (P )| =
O(p4). On the other hand, by Proposition 3.1, for any ε > 0 and large enough p one has pn � (logNE)1+ε . This
implies that pn � p4+ε for large p, so that n � 4. �
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1 Consider, for instance, the Weierstrass equation

(E): y2 + xy = x3 − 36

j − 1728
x − 1

j − 1728
,

having discriminant j2/(j − 1728)3. It defines an elliptic curve E1 over Q with j -invariant equal to j , so E1 is a quadratic twist of E over Q.
For � a prime not dividing j (j − 1728) the equation (E) defines a smooth model for E1 over Z(�) , the localization of Z at �. Therefore the minimal
Weierstrass equation for E1 over Z defines a scheme which is smooth over Z(�) , which means that � does not divide the conductor of E1.


