
C. R. Acad. Sci. Paris, Ser. I 346 (2008) 603–606
http://france.elsevier.com/direct/CRASS1/

Number Theory/Geometry

Congruence obstructions to pseudomodularity of Fricke groups

David Fithian

Department of Mathematics, University of Pennsylvania, Philadelphia, PA 19104-6395, USA

Received 16 August 2007; accepted after revision 14 April 2008

Available online 15 May 2008

Presented by Jean-Pierre Serre

Abstract

A pseudomodular group is a finite coarea non-arithmetic Fuchsian group whose set of cusps is P1(Q). Long and Reid constructed
finitely many of these by considering Fuchsian groups uniformizing one-cusped tori, i.e., Fricke groups. We show that a zonal (i.e.,
having a cusp at infinity) Fricke group with rational cusps is pseudomodular if and only if its set of finite cusps is dense in the finite
adeles of Q, and that there are infinitely many Fricke groups with rational cusps that are neither pseudomodular nor arithmetic. To
cite this article: D. Fithian, C. R. Acad. Sci. Paris, Ser. I 346 (2008).
© 2008 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Résumé

Obstacles à la pseudo-modularité des groupes de Fricke données par des conditions de congruence. Un groupe pseudo-
modulaire est un groupe fuchsien, non-arithmétique et de coaire finie dont l’ensemble des pointes est P1(Q). Long et Reid en ont
construit un nombre fini en considérant les groupes fuchsiens qui uniformisent les tores à un trou, appelés groupes de Fricke. Nous
démontrons ici qu’un groupe de Fricke, dont les pointes sont les nombres rationnels et l’infini, est pseudo-modulaire si et seulement
si l’ensemble de ses pointes finies est dense dans le groupe des adèles finies de Q. Nous en déduisons, l’existence d’une infinité
de groupes de Fricke à pointes rationnelles, qui ne sont ni pseudo-modulaires ni arithmétiques. Pour citer cet article : D. Fithian,
C. R. Acad. Sci. Paris, Ser. I 346 (2008).
© 2008 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

A cusp of a Fuchsian group Γ ⊂ PSL2(R) is an x ∈ P1(R) that is the unique fixed point of an element of Γ (see [6]
Ch. 1). The modular group PSL2(Z) is a finite coarea Fuchsian group whose set of cusps coincides with P1(Q). In [5],
Long and Reid show that there exist finite coarea Fuchsian subgroups of PSL2(Q) that are not commensurable with
PSL2(Z) (i.e., not arithmetic) and whose cusp set equals P1(Q). They call such groups pseudomodular.

Long and Reid studied a particular family Δ(u2,2t) of Fricke groups as candidates for pseudomodularity. Fricke
groups are those Fuchsian groups that uniformize one-cusped hyperbolic tori; see [1]. As in [5], for rationals u2 and t

with 0 < u2 < t − 1, the group Δ(u2,2t) is the subgroup of PSL2(R) freely generated by the hyperbolic elements
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1 t − u2

)
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Each such Δ(u2,2t) is a zonal Fricke group with exactly one orbit of cusps, which is contained in P1(Q). (We call a
Fuchsian group zonal if ∞ is among its cusps.) Moreover, every Fricke group whose cusps lie in P1(Q) is conjugate
in PGL2(Q) to some Δ(u2,2t). This follows from a straightforward application of results in §1 of [3] to the traces of
g1, g2 and g1g2. Thus the family of groups Δ(u2,2t) represents all conjugacy classes of Fricke groups having only
rational cusps.

Among Long and Reid’s stated open problems in [5] is the determination of the values (u2,2t) ∈ Q × Q for which
Δ(u2,2t) is pseudomodular. Recall that if Ẑ is the profinite completion of Z, then AQ,f = Q ⊗Z Ẑ is an additive
topological group having a basis of open neighborhoods of 0 consisting of mẐ for m ∈ Q. Our first result, given with
brief proof, is:

Theorem 1.1. The Fuchsian group Δ(u2,2t) is pseudomodular or arithmetic if and only if its cusps (without ∞) are
dense in the ring AQ,f of finite adeles over Q.

Proof. The “only if” statement is trivial. To establish the converse, we note that Δ(u2,2t) contains the translation
z �→ z + 2t given by g1g

−1
2 g−1

1 g2. If Δ(u2,2t) is neither pseudomodular nor arithmetic, then since ∞ is a cusp,
some rational x must not be a cusp. The orbit U of x under the translation z �→ z + 2t is an open subset of Q given
the subspace topology from AQ,f . This U contains no cusps, so the set of finite cusps of Δ(u2,2t) is not dense
in AQ,f . �

Theorem 1.1 is in fact true for arbitrary zonal Fuchsian subgroups of PSL2(Q). We remark that for a given t only
finitely many u2 yield arithmetic groups. We shall use refinements of Theorem 1.1 to give explicit, infinite families of
Δ(u2,2t) whose cusp sets are proper subsets of P1(Q). For example:

Theorem 1.2. Let p be a prime and t an integer at least 2. Then Δ(p−2,2t) is neither pseudomodular nor arithmetic.
The collection of groups Δ(p−2,2t) spans infinitely many commensurability classes; in particular, there are infinitely
many commensurability classes of Fricke groups with rational cusps that are neither pseudomodular nor arithmetic.

We will provide a proof for the first part of this theorem in Section 2.
In [5], Long and Reid exhibit finitely many Δ(u2,2t) that are neither pseudomodular nor arithmetic. For each

such group, they provide a rational number fixed by a hyperbolic element of Δ(u2,2t). Such fixed points cannot be
cusps; see the proof of Theorem 8.3.1 in [2]. We do not know whether rational hyperbolic fixed points exist for all
non-pseudomodular Δ(u2,2t), and in any case, our proofs do not require or produce them.

Our results below involve the density of cusp sets in various topologies on P1(Q). Each of these topologies is
Hausdorff and we are only considering zonal Fuchsian groups, so density of the set of cusps in P1(Q) is equivalent to
density of finite cusps in Q. Therefore the results below are comparable with Theorem 1.1.

2. Results

Denote by C(G) the cusp set of a Fuchsian group G. We are interested in the question of when C(Δ(u2,2t))

is P1(Q). If C(Δ(u2,2t)) is not dense in some finite product
∏

i P1(Qpi
) with P1(Q) embedded diagonally, then

C(Δ(u2,2t)) 	= P1(Q) since P1(Q) is dense in said product.
For p a prime, we denote by vp the p-adic valuation of Qp .

Proposition 2.1. Let p be prime. If vp(t) � 0 and vp(u2) � −2, or if vp(t) < 0 and vp(u2) � 2(vp(t) − 1), then
C(Δ(u2,2t)) is not dense in P1(Qp).

Proposition 2.2. If p and q are prime, vp(u2) = −1 = vq(u2), and t is p-adically and q-adically integral, then
C(Δ(u2,2t)) is not dense in P1(Qp) × P1(Qq).



D. Fithian / C. R. Acad. Sci. Paris, Ser. I 346 (2008) 603–606 605
Results similar to Proposition 2.2 hold for t that are not p-adically integral or not q-adically integral; we omit their
statements for brevity. As a corollary to these two propositions, whenever t is an integer and the denominator of u2 is
composite, Δ(u2,2t) is not pseudomodular. We in fact have a stronger result:

Proposition 2.3. Let t be an integer and suppose Δ(u2,2t) is pseudomodular. Then

(a) u2 has prime or unit denominator, say p,
(b) if this p is an odd prime, then p does not divide t , and
(c) for all odd primes q dividing t , u2 (necessarily in Zq ) is congruent to 0 or −1 mod q .

Here we prove the first part of Theorem 1.2 by establishing the first part of Proposition 2.1.

Proof. Let p be prime, let t be p-adically integral and select u2 with vp(u2) � −2. Accordingly, write u2 = m/pa

with m a p-adic unit and a an integer at least 2. Suppose x ∈ Q with vp(u2) < vp(x) < 0. Set e = −vp(x) and
hence write x = r/s with r and s coprime integers such that p � r and pe ‖ s. Also, define s0 := s/pe . We compute
vp(g±1

i x) (i = 1,2) by representing the elements g±1
i by matrices in PGL2(R) whose entries are all p-adic integers.

For example:

vp(g1x) = vp

(
(t − 1)par + ms

) − vp(par + pas) = e + vp

(
(t − 1)pa−er + ms0

) − a = e − a.

Similarly,

vp(g−1
1 x) = e − a and vp(g2x) = vp(g−1

2 x) = −e.

We assumed that −a < −e < 0, so we have −a < e − a < 0. Therefore, vp(u2) < vp(g±1
i x) < 0 for i = 1,2.

We conclude that Δ(u2,2t) leaves invariant the p-adically open, proper subset {x ∈ Q: vp(u2) < vp(x) < 0} of
P1(Q). Since this set misses ∞, which generates the single orbit of cusps of Δ(u2,2t), C(Δ(u2,2t)) is not dense in
P1(Qp). �

Propositions 2.2 and 2.3 and the remainder of Proposition 2.1 are proved similarly by finding proper, non-empty
Δ(u2,2t)-invariant subsets of P1(Q) that miss ∞ and that are open in the topology induced by that of P1(Qp) or
P1(Qp) × P1(Qq).

In contrast to the above results, there are many groups Δ(u2,2t) whose cusp sets are dense in every topology on
P1(Q) induced by a product of p-adic fields. For example, if t is prime, u2 has prime denominator not equal to t

and u2 ≡ 0 or −1 mod t , then C(Δ(u2,2t)) is dense in the product
∏

p P1(Qp) over all primes. There are groups
with hyperbolic fixed points to which this statement applies, such as Δ(6/11,6) with a hyperbolic fixed point of 1/4.
Consequently:

Theorem 2.4. Let Δ(u2,2t) be non-arithmetic. Then the density of C(Δ(u2,2t)) in the product
∏

p P1(Qp), ranging
over all primes p and given the product topology, is not a sufficient condition for pseudomodularity.

3. Questions

If the parameters u2 and t are algebraic numbers and K = Q(u2, t), then (as in [4]) we call Δ(u2,2t) maximally
cusped if C(Δ(u2,2t)) = P1(K). Maximally cusped groups can give information about the class group of K . For
example, if a maximally cusped group Δ(u2,2t) is a subgroup of PSL2(OK) with K = Q(u2, t), then the class
number of K is one. Thus we are interested in finding necessary and sufficient conditions on u2 and t for Δ(u2,2t)

being maximally cusped.
Above, we considered the most basic case, with K = Q, by finding obstructions to Δ(u2,2t) being maximally

cusped (i.e., pseudomodular) using p-adic topologies on P1(Q). By Theorem 2.4, our considerations are not enough
to characterize pseudomodularity. One way to extend our work is to investigate density of cusps in topologies that
strictly refine p-adic topologies on P1(Q), such as the following:

Definition 3.1. Identify P1(Q) with P1(Z), understood as a subset of Z2/{±1}. Let S be the set of all primes (resp., a
finite set of primes). The diagonal embedding of Z2/{±1} in (

∏
p∈S Z2

p)/{±1}, endowed with the product topology,

induces a topology on P1(Q) which we call the congruence topology (resp., the S-congruence topology).
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Since the congruence topology is finer than that induced by the product
∏

p P1(Qp) over all primes, the cusp sets of

the groups of Propositions 2.1 and 2.2 are not dense in P1(Q) given the congruence topology. We also have examples
of groups whose cusp sets are not dense in the congruence topology on P1(Q) despite being dense in the topology
induced by the product

∏
p P1(Qp) over all primes. We give such an example now.

Let Λ(u2,2t) be the kernel of the group homomorphism Δ(u2,2t) → Z/2 ⊕ Z/2 given by g1 �→ (1,0) and
g2 �→ (0,1). Then Λ(u2,2t) ⊆ PSL2(Q) and C(Λ(u2,2t)) = C(Δ(u2,2t)). Consider the group Δ := Δ(6/11,6).
We can construct a subgroup K of PSL2(Z[2−1]) containing Λ(6/11,6) that has eight orbits in its action on P1(Q).
An explicit description of these K-orbits gives us a Δ-invariant, non-empty, proper subset X of P1(Q) that is open
in the S-congruence topology for S = {3,11} and hence open in the congruence topology on P1(Q). By the remarks
immediately prior to Theorem 2.4, the cusp set of Δ is nevertheless dense in

∏
p P1(Qp), and Δ is neither pseudo-

modular nor arithmetic. This motivates the following

Question. Suppose that the set C(Δ(u2,2t)) is dense in the congruence topology on P1(Q), or equivalently if, for
every integer N > 0, the image of C(Δ(u2,2t)) in (Z/NZ)2/{±1} consists of all classes of elements of order N . Is
the group Δ(u2,2t) pseudomodular or arithmetic?
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