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Abstract

Let S = {g1, . . . , gk} be a set of elements of SLd(Z) generating a Zariski dense subgroup of SLd (R) and let p be a sufficiently
large prime. Consider the family of Cayley graphs G(SLd(Z/pnZ),πpn(S)) = Gn, where we vary n. Then {Gn} forms an expander
family. To cite this article: J. Bourgain, A. Gamburd, C. R. Acad. Sci. Paris, Ser. I 346 (2008).
© 2008 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Résumé

Marches au hasard et l’expansion en SLd(Z/pnZ). Soit S = {g1, . . . , gk} un sous-ensemble de SLd(Z) engendrant un sous-
groupe de SLd(R) Zariski dense. On considère les graphes de Cayley G(SLd(Z/pnZ),πpn(S)) = Gn, òu l’on varie n. Alors {Gn}
forment une famille d’expanseurs. Pour citer cet article : J. Bourgain, A. Gamburd, C. R. Acad. Sci. Paris, Ser. I 346 (2008).
© 2008 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Version française abrégée

Dans cette Note, nous présentons une extension de résultats obtenus dans [3] et [6,7] sur les propriétés d’expan-
sion de certains graphes de Cayley sur les groupes SLd(q) = SLd(Z/qZ). Nous fixons des elements {g1, . . . , gk} = S

de SLd(Z) et supposons que S engendre un sous-groupe Λ dont l’adhérence de Zariski Λ̄z = SLd . Fixons aussi un
nombre premier p suffisamment grand et considérons les graphes de Cayley Gn = G(SLd(pn),πpn(S)) sur SLd(pn),
où πq dénote la réduction mod q . Selon le théorème de Matthews–Vaserstein–Weisfeiler, ces graphes sont connexes.
Nous démontions que {Gn} forment une famille d’expanseurs à coefficient d’expansion c(Gn) minoré par une constante
c(S,p) > 0 (pour d = 2, la constante ne dépend que de S). Pour d = 2, le problème d’expansion des graphes
G(SL2(q),πq(S)) a eté étudié dans [3] pour q un nombre premier et dans [6,7] pour q un produit simple de nombres
premier ; on obtient une minoration du coefficient d’expansion par une constante c(S) indépendante de q , á condition
que (q, q0(S)) = 1. Dans le cas q = pn, p fixé et n → ∞, considéré ici, l’approche fait intervenir, outre des méthodes
de combinatoire arithmétique, aussi, certaines techniques probabilistes, en particulier la thèorie des produits aléatoires
de matrices.
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1. Statement of the results and comments

The general setup considered in [6] and [7] and here is as follows.
Let S = {g1, . . . , gk} be a subset of SLd(Z) and Λ = 〈S〉 ⊂ SLd(Z) the subgroup generated by S. We assume Λ

Zariski dense in SLd . According to the theorem of Matthews–Vaserstein–Weisfeiler, there is some integer q0 = q0(S)

such that πq(Λ) = SLd(q), assuming (q, q0) = 1. Here πq denotes the reduction mod q . Partly motivated by questions
of prime sieving, it was conjectured in [6,7] that the Cayley graphs G(SLd(q),πq(S)) form an expander family, with
expansion coefficient minorated by a constant c = c(S). For d = 2, we verified this conjecture in [3,6,7] provided q is
assumed square free (in fact, for q prime, even stronger results are obtained in [3]). At the other end, there are moduli
of the form q = pn where we fix p say and let n → ∞. The combinatorics involved here turns out to be significantly
different, starting from the sum–product theorem in the residue ring Z/pnZ. We also rely on a ‘multi-scale’ approach,
reminiscent of the Solovay–Kitaev algorithm in quantum computation. In fact our treatment for this type of moduli
turns out to be rather robust, in the sense that we do not have to enter the finer aspects of the group structure (of course
crucial use is made of the strong approximation property and also the irreducibility of certain representations). The
method applies to the case d > 2 as well and provides the first results towards the above conjecture in this setting. Our
main result is the following:

Theorem. Let S = {g1, . . . , gk} be a finite subset of SLd(Z) generating a subgroup Λ which is Zariski dense in SLd .
Let p be a sufficiently large prime.

Then the Cayley graphs G(SLd(pn),πpn(S)) form an expander family as n → ∞. The expansion coefficients are
minorated by a positive number c(S,p) > 0; if d = 2, we may further drop the dependence on p, i.e. c(S,p) = c(S).

Let us take the set S symmetric, i.e. S = {g1, . . . , gk, g
−1
1 , . . . , g−1

k } to which we associate the probability measure

ν = 1

|S|
∑

g∈S

δg

on SLd (δx denotes the Dirac measure at x). The theorem stated above has the following implication for which we do
not know a more direct proof:

Corollary 1. Let S and ν be as above. Let S be a nontrivial algebraic subvariety of SLd(C). Then the convolution
powers ν(�) of ν satisfy

ν(�)(S) < e−c� for � → ∞ (1)

for some c > 0 (win fact c depends only on ν and the degree of S).

Assume now q a sufficiently large prime and G a proper subgroup of SLd(q). From the work of Nori on the strong
approximation property, it follows that G satisfies a nontrivial algebraic equation (mod q). We may then invoke
Corollary 1 to obtain

Corollary 2. Let again S and ν be as above and let q be a sufficiently large prime. Let G be a proper subgroup of
SLd(q). We denote πq [ν] also by ν. There is an estimate

ν(�)(G) < Cc−c� for � < logq (2)

where the constants c,C only depend on S.

Corollary 2 is of significance to establish the Conjecture mentioned in the beginning for other moduli q (besides q

of the form q = pn with fixed p). Recalling the approach in [3] (see also next section), the conjecture for SLd(q) (q
prime say) will result by combining Lemma 2, Corollary 2 with a ‘product theorem’ in SLd(q), of the form

|A.A.A| > |A|1+ε (3)

whenever A ⊂ SLd(q) generates the full group and |A| < |SLd(q)|1−δ , with ε = ε(δ) > 0 ((3) was proven by H. Helf-
gott [9] if d = 2 and he also announced the result for d = 3).
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The special moduli q = pn with fixed p turn out to be also of interest in relation to the work of D. Long,
A. Lubotzky and A. Reid [10] on Heegaard genus and property τ for hyperbolic 3-manifolds. More precisely, let
M be a finite volume hyperbolic 3-manifold. From the result for the SL2(p

n) towers, one may then produce a nested
co-final family of finite sheeted covers with positive infimal Heegaard gradient. Long et al. [10] also put forward
the conjecture that any finitely generated subgroup Γ of GL(n,C) with semi-simple Zariski closure has a co-final
(nested) L= {Ni} of finite index normal subgroups for which Γ has property τ with respect to L. It seems reasonable
to believe that moduli q = pn and the proof of our theorem may provide an approach.

2. Ingredients of the proof

The elements of the argument are the following:

(i) A reduction to non-existence of certain ‘approximative subgroups’ of SLd(Z/qZ);
(ii) The theory of random matrix products;

(iii) Construction of large sets of commuting elements;
(iv) Sum–product theorem in Z/pnZ and certain extension fields;
(v) Solovay–Kitaev type multi-scale construction.

The basic approach is completely similar to [3]. Following the Sarnak–Xue trace argument [11] based on high
multiplicity of nontrivial eigenvalues, the expansion property is deduced from

Proposition 1. For any γ > 0, there is � ∼ logq such that
∥∥πq [ν(�)]∥∥∞ < qγ

∣∣SLd(q)
∣∣−1

. (4)

Proposition 1 will be applied for a specific, sufficiently small γ > 0.
Note that in the present setting with q = pn, we require � > C logq , with c = c(ν, γ ) also depending on p if d > 2.
The noncommutative Balog–Szemeredi–Gowers theorem (see [12]) allows then a further reduction to a set-

theoretical statement. Denote N = |SLd(q)| = |G|.

Lemma 2. Given γ > 0 and letting ε > 0 be small enough, there is no subset H of G with the following properties:

|H | < N1−γ , (5)

ν(�)(x0H) > N−ε for some x0 ∈ G and � ∼ logq, (6)

H = H−1. (7)

There is X ⊂ G, |X| < Nε with H.H ⊂ X.H ∩ H.X. (8)

Recall that H satisfying (7), (8) is referred to as an ‘Nε-approximative group’.
The following two statements are deduced from classical random matrix product theory (cf. [1,8]), based on our

assumption that 〈suppν〉 is Zariski-dense in SLd , and a transference to the modular setting (using a quantitative Bezout
theorem):

Lemma 3. Let Q ∈ Z+ (large) and � > logQ. Then

ν(�)
{
g ∈ SLd(Z) | Res(Pg,P

′
g) ≡ 0(mod Q)

}
< Q−c (9)

with c = c(ν) and Pg is the characteristic polynomial of g.

Lemma 4. Let Q ⊂ Z+ (large) and � > logQ. Then, for some Q1 = QC

ν(�)
{
y ∈ SLd(Z) | Trgξg−1η ≡ 0(mod Q1)

}
< Q−c (10)

whenever ξ, η ∈ Matd(Z) satisfy πQ(ξ) = 0, πQ(η) = 0 and Tr ξ = 0 = Trη.
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Thus Lemma 3 expresses eigenvalue simplicity (mod Q) for a generic element in the ν-random walk and Lemma 4
is a (mod Q) hyperplane escaping property for the action by conjugation on the traceless matrices.

As in [9] and [7], the first step in the amplification of H is the construction of a large set of commuting matrices.
Denote for given s ∈ Z+, by H(s) the s-fold product of H .

Lemma 5. There is h ∈ H(8) and S ⊂ H.H such that

Res(Ph,P
′
h) = 0 (mod pm0)

(
where m0 = o(n)

)
, (11)

|S| > qc, (12)

gh = hg(mod p) for g ∈ S. (13)

Note that, contrary to [9,7], the exact size of S in (12) is not important.
Diagonalize h ∈ SLd(Z) considering an extension field K of Q. Let P denote a prime divisor of (p) in the integers

O of K . If e is the ramification index of P , it follows from (11), (13) that in the new basis

h =
d∑

i=1

μi(ei ⊗ ei) with
∏

i =j

(μi − μj ) /∈Pem0 (14)

and

g =
∑

λi(ei ⊗ ei)(mod Pe(n−m0)) for g ∈ S. (15)

Once a set of diagonal matrices is obtained, we may start to bring scalar sum–product theorems into play. We use
the sum–product theorem in Z/pnZ (cf. [2]) and its generalization to algebraic extensions of Q.

Proposition 6. Let K be an extension of Q and P a prime ideal dividing the rational prime p. Let n ∈ Z+ and
A ⊂ O/Pn such that

πPe (A) generates O/Pe (where e is the ramification of P), (16)
∣∣πPj (A)

∣∣ > pjδ for all 1 � j � n, (17)

|A| < |O/Pn|1−δ1 (18)

for some δ, δ1 > 0. Then

|A.A + A.A| > |A|1+δ′
(19)

where δ′ = δ′(δ, δ1, [K : Q]) > 0.

Of course, if O = Z, assumption (16) may be dropped. For our purpose, we rely on the following statement that
only requires an assumption on |πPn(A)|. In fact, it is needed more generally for subsets of a Cartesian product Ow

(with w some given power).

Lemma 7. Let A ⊂ Ow satisfy
∣∣πPn(A)

∣∣ > pnδ. (20)

Then there are n1 < n2 < Cn and ξ ∈ Ow satisfying

n2 − n1 > cn, (21)

πP (ξ) = 0, (22)

ξZ ∩Pn1 ⊂ A′ +Pn2, for some sum–product set A′ of A. (23)

By ‘sum–product set’, we mean a set of the form rA(s) − rA(s), where rB stands for the r-fold sumset of B , A(s)

the s-fold product set of A and r, s bounded. In Lemma 7, we allow the constants also to depend on p, which is given
and assumed sufficiently large.
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In our application, Ow will be the space of trace-less matrices in Matd(O) and Lemma 7 will be applied with
n = n0 ∼ κn (where q = pn and κ a sufficiently small constant). Returning to the approximative group H , this allows
us to deduce:

Lemma 8. There are positive integers n1 < n2 < n and ξ ∈ Matd(Z) such that

n1 ∼ n2 ∼ n2 − n1 ∼ ε0n, (24)

Tr ξ = 0 and πp(ξ) = 0. (25)

There is a suitable product set H ′ of H with

πpn2

({1 + pn1 tξ | t ∈ Z}) ⊂ πpn2 (H
′). (26)

In (24), ε0 is again an appropriately chosen small constant (in particular, depending on γ in (5)). Replacing ξ by
conjugates gξg−1 with g ∈ H and invoking Lemma 4, the conclusion of Lemma 8 is further upgraded to:

Lemma 9. There are positive integers n1 < n2 < n satisfying (24) and a product set H ′ of H such that

πpn2

({1 + pn1x | x ∈ Matd(Z),Trx = 0}) ⊂ πpn2 (H
′). (27)

We are now precisely in a situation to carry out the p-adic variant of the Solovay–Kitaev algorithm to conclude
that some further product set H ′ of H contains {g ∈ SLd(pn) | g ≡ 1(mod pn1)}. By (24), this will contradict (5) and
the approximative group property (8), implying that |H ′| < pε′ |H |.

Recall that the Solovay–Kitaev construction uses Lie-algebra point of view and relies on the following simple fact

Lemma 10. Let g,h ∈ Matd(Z) satisfy

g ≡ 1(mod pm) and h ≡ 1(mod pm′
) (28)

with m � m′. Then

ghg−1h−1 ≡ 1 + [g,h] (mod p2m+m′
) (29)

with [g,h] = gh − hg.

Complete proofs will appear in [4,5].
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