Algebra
 Extensions with Galois group $2^{+} S_{4} * D_{8}$ in characteristic 3
 Teresa Crespo ${ }^{\text {a }}$ ，Zbigniew Hajto ${ }^{\text {b }}$
 ${ }^{\text {a }}$ Departament d＇Àlgebra i Geometria，Universitat de Barcelona，Gran Via de les Corts Catalanes 585， 08007 Barcelona，Spain
 ${ }^{\text {b }}$ Theoretical Computer Science Department，Jagiellonian University，ul．Gronostajowa 3， 30387 Kraków，Poland

Received 5 October 2007；accepted after revision 14 April 2008
Available online 20 May 2008
Presented by Jean－Pierre Serre

Abstract

For K a field of characteristic 3 we give explicitly the whole family of Galois extensions of K with Galois group $2^{+} S_{4} * D_{8}$ and determine the discriminant of such an extension．In the case when K is the field of fractions of a formal power series ring in 3 variables，this result is interesting in the context of Abhyankar＇s Normal Crossings Local Conjecture．To cite this article：T．Crespo， Z．Hajto，C．R．Acad．Sci．Paris，Ser．I 346 （2008）． © 2008 Académie des sciences．Published by Elsevier Masson SAS．All rights reserved．

Résumé

Extensions galoisiennes de groupe $\mathbf{2}^{+} \boldsymbol{S}_{\mathbf{4}} \boldsymbol{*} \boldsymbol{D}_{\mathbf{8}}$ en caractéristique 3．Pour K un corps de caractéristique 3 nous donnons explicitement la famille complète d＇extensions de K à groupe de Galois $2^{+} S_{4} * D_{8}$ et déterminons le discriminant d＇une telle extension．Dans le cas où K est le corps de fractions d＇un anneau de séries de puissances formelles en 3 variables，ce résultat est intéressant dans le contexte de la Conjecture Locale de Croisements Normaux d＇Abhyankar．Pour citer cet article：T．Crespo， Z．Hajto，C．R．Acad．Sci．Paris，Ser．I 346 （2008）．
© 2008 Académie des sciences．Published by Elsevier Masson SAS．All rights reserved．

1．Introduction

In this Note we give explicitly the whole family of Galois extensions of a field K of characteristic 3 with Galois group $2^{+} S_{4} * D_{8}$ and determine the discriminant of such an extension．This result improves the one obtained in［3］ by dropping the condition assumed there that the fields considered contain the field \mathbb{F}_{9} of nine elements．In the case when K is the field of fractions of the formal power series ring in 3 variables over a field k of characteristic 3 ，the explicit determination of its $2^{+} S_{4} * D_{8}$－coverings and their discriminant is interesting in the context of Abhyankar＇s Normal Crossings Local Conjecture（see［2，4］as well as the Introduction in［3］）．

2．Preliminaries

We denote by $2^{+} S_{n}$ the double cover of the symmetric group S_{n} in which transpositions lift to involutions and products of two disjoint transpositions lift to elements of order 4 and by D_{8} the dihedral group of order 8 ，which is a

[^0]double cover of the Klein group V_{4}. We denote by $2^{+} S_{4} * D_{8}$ the central product of the groups $2^{+} S_{4}$ and D_{8}. Let K be a field of characteristic different from 2 and let $\tilde{L} \mid K$ be a Galois extension with Galois group the group $2^{+} S_{4} * D_{8}$. Then if L is the field fixed by the center of $2^{+} S_{4} * D_{8}$, we have $\operatorname{Gal}(L \mid K) \simeq S_{4} \times V_{4}$ and for L_{1}, L_{2} the fixed subfields of L by V_{4} and S_{4}, respectively, we have $\operatorname{Gal}\left(L_{1} \mid K\right) \simeq S_{4}$ and $\operatorname{Gal}\left(L_{2} \mid K\right) \simeq V_{4}$. Therefore we obtain the whole family of Galois extensions with Galois group $2^{+} S_{4} * D_{8}$ of a field K by constructing the whole family of $2^{+} S_{4} * D_{8}$-extensions containing a given arbitrary S_{4}-extension of the field K. Let us now be given a polynomial $f(X) \in K[X]$ of degree 4 with Galois group S_{4} and splitting field L_{1} over K. We want to determine when L_{1} is embeddable in a Galois extension of K with Galois group $2^{+} S_{4} * D_{8}$. This fact is equivalent to the existence of a Galois extension $L_{2} \mid K$ with Galois group V_{4}, disjoint from L_{1}, and such that, if L is the compositum of L_{1} and L_{2}, the Galois embedding problem
\[

$$
\begin{equation*}
2^{+} S_{4} * D_{8} \rightarrow S_{4} \times V_{4} \simeq \operatorname{Gal}(L \mid K) \tag{1}
\end{equation*}
$$

\]

is solvable. We recall that a solution to this embedding problem is a quadratic extension \tilde{L} of the field L, which is a Galois extension of K with Galois group $2^{+} S_{4} * D_{8}$ and such that the restriction epimorphism between the Galois groups $\operatorname{Gal}(\tilde{L} \mid K) \rightarrow \operatorname{Gal}(L \mid K)$ agrees with the given epimorphism $2^{+} S_{4} * D_{8} \rightarrow S_{4} \times V_{4}$. If $\tilde{L}=L(\sqrt{\gamma})$ is a solution, then the general solution is $L(\sqrt{r \gamma}), r \in K^{*}$. Given a Galois extension $L_{1} \mid K$ with Galois group S_{4}, in order to obtain all $2^{+} S_{4} * D_{8}$-extensions of K containing L_{1}, we have to determine all V_{4}-extensions L_{2} of K, disjoint from L_{1}, and such that the embedding problem (1) is solvable.

Let $E=K[X] /(f(X))$, for $f(X)$ the polynomial of degree 4 realizing L_{1} and let d be the discriminant of the polynomial $f(X)$. Let $L_{2}=K(\sqrt{a}, \sqrt{b})$. The obstruction to the solvability of the embedding problem (1) is equal to $\mathrm{w}\left(Q_{E}\right) \cdot(2, d) .(a, b) \in H^{2}\left(G_{K},\{ \pm 1\}\right)$, where Q_{E} denotes the trace form of the extension $E \mid K$ and (\cdot, \cdot) a Hilbert symbol (see [3]).

From now on, we assume that K is a field of characteristic 3. We write $f(X)=X^{4}+s_{2} X^{2}-s_{3} X+s_{4}$. By computation of the trace form Q_{E}, we obtain that the solvability of the embedding problem (1) is equivalent to

$$
\begin{equation*}
\left(-d s_{2},-\left(s_{2}^{2}-s_{4}\right) s_{2}\right)=(a, b) \tag{2}
\end{equation*}
$$

3. Main results

Theorem 3.1. Let K be a field of characteristic 3, $f(X)=X^{4}+s_{2} X^{2}-s_{3} X+s_{4} \in K[X]$, with Galois group S_{4} and L_{1} the splitting field of $f(X)$ over K. Let $d=s_{4}^{3}+s_{2}^{2} s_{4}^{2}+s_{2}^{4} s_{4}-s_{2}^{3} s_{3}^{2}$ the discriminant of the polynomial $f(X)$. The family of elements a, b in K such that $(a, b)=\left(-d s_{2},-m s_{2}\right)$, where $m:=s_{2}^{2}-s_{4}$, can be given in terms of an arbitrary invertible matrix $P=\left(p_{i j}\right)_{1 \leqslant i, j, \leqslant 3} \in \mathrm{GL}(3, K)$ as $a=-d A, b=-s_{2} m F$, where

$$
\begin{aligned}
& A=s_{2} p_{11}^{2}+m p_{21}^{2}+d m s_{2} p_{31}^{2}, \\
& F=d m P_{13}^{2}+d s_{2} P_{23}^{2}+P_{33}^{2}, \quad \text { with } P_{i j}=\left|\begin{array}{cc}
p_{i i} & p_{i j} \\
p_{j i} & p_{j j}
\end{array}\right|
\end{aligned}
$$

Let $L_{2}=K(\sqrt{a}, \sqrt{b})$ and assume that $L_{2} \mid K$ has Galois group V_{4} and $L_{1} \cap L_{2}=K$ (i.e. that the elements $a, b, a b, d a, d b, d a b$ are not squares in K). Let $L=L_{1} \cdot L_{2}$. For x a root of the polynomial $f(X)$, take $y=a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}$, with

$$
\begin{aligned}
& a_{0}=-s_{2} a_{2}, \\
& a_{1}=-d m\left(n s_{2} p_{11} P_{23}+p_{21} P_{33}+m n p_{21} P_{13}+d s_{2} p_{31} P_{23}\right)+m \sqrt{a}\left(d P_{13}-n P_{33}\right), \\
& a_{2}=d s_{2}\left(p_{11} P_{33}+s_{2}^{2} s_{3} p_{11} P_{23}+m s_{2} s_{3} p_{21} P_{13}-d m p_{31} P_{13}\right)+s_{2} \sqrt{a}\left(s_{2} s_{3} P_{33}-d P_{23}\right), \\
& a_{3}=-d m s_{2}\left(s_{2} p_{11} P_{23}+m p_{21} P_{13}\right)-m s_{2} \sqrt{a} P_{33},
\end{aligned}
$$

where $n=s_{2}^{2}+s_{4}$. Then $L(\sqrt{r y}), r \in K^{*}$, is the general solution to the embedding problem

$$
2^{+} S_{4} * D_{8} \rightarrow S_{4} \times V_{4} \simeq \operatorname{Gal}(L \mid K)
$$

Proof. By [5], 3.2, the equality of Hilbert symbols (2) is equivalent to the K-equivalence of quadratic forms

$$
\begin{equation*}
\left\langle-d s_{2},-m s_{2},-d m\right\rangle \sim\langle a, b,-a b\rangle . \tag{3}
\end{equation*}
$$

The family of quadratic forms K-equivalent to $R:=\left\langle-d s_{2},-m s_{2},-d m\right\rangle$ is given by $P^{T} R P$, for P running over GL(3, K). By diagonalizing $P^{t} R P$, we obtain $\left\langle-d A,-s_{2} m F,-d A s_{2} m F\right\rangle$, with A and F as in the statement. Let $a=$ $-d A, b=-s_{2} m F$. Now, we have $(a, b)=1 \in H^{2}\left(G_{K(\sqrt{a})},\{ \pm 1\}\right)$ and, as $a \notin K^{2}$ and $L_{1} \cap K(\sqrt{a})=K$, the extension $L_{1}(\sqrt{a}) \mid K(\sqrt{a})$ has Galois group S_{4} and the Galois embedding problem $2^{+} S_{4} \rightarrow S_{4} \simeq \operatorname{Gal}\left(L_{1}(\sqrt{a}) \mid K(\sqrt{a})\right)$ is solvable. Then, by Abhyankar's Embedding Criterion (see $[1,3]), L_{1}(\sqrt{a})$ is the splitting field of a polynomial of the form $Y^{4}+c_{3} Y+c_{4} \in K(\sqrt{a})[Y]$, so there exists elements $a_{0}, a_{1}, a_{2}, a_{3} \in K(\sqrt{a})$ such that the irreducible polynomial over $K(\sqrt{a})$ of the element $y=a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}$ has such a form. By computation, this is equivalent to the conditions $a_{0}=-a_{2} s_{2}$ and $Q\left(a_{1}, a_{2}, a_{3}\right):=s_{2} a_{1}^{2}+\left(s_{2}^{2}-s_{4}\right) a_{2}^{2}+s_{2}^{3} a_{3}^{2}+\left(s_{2}^{2}+s_{4}\right) a_{1} a_{3}+2 s_{2} s_{3} a_{2} a_{3}=0$. Moreover, by Abhyankar's Polynomial Theorem (see [1,3]), the splitting field of the polynomial $\operatorname{Irr}(\sqrt{y}, K(\sqrt{a}))$, that is the field $L_{1}(\sqrt{a})(\sqrt{y})$, is a solution to the Galois embedding problem $2^{+} S_{4} \rightarrow S_{4} \simeq \operatorname{Gal}\left(L_{1}(\sqrt{a}) \mid K(\sqrt{a})\right)$. Our aim now is to compute explicitly such elements a_{i}. Diagonalizing Q, we obtain $\left\langle s_{2}, m, s_{2} m d\right\rangle$ and from (3) we get $\left\langle s_{2}, m, s_{2} m d\right\rangle \sim\left\langle A, s_{2} m A F, s_{2} m F d\right\rangle$ and the basis change matrix can be written down explicitly in terms of the matrix P. Now the vector $(0, d, \sqrt{a}) \in K(\sqrt{a})^{3}$ anihilates the quadratic form $\left\langle A, s_{2} m A F, s_{2} m F d\right\rangle$ and from it we obtain the values for $a_{1}, a_{2}, a_{3} \in K(\sqrt{a})$ such that $Q\left(a_{1}, a_{2}, a_{3}\right)=0$.

We want to see now that $L(\sqrt{y}) \mid K$ is a Galois extension with Galois group $2^{+} S_{4} * D_{8}$. By the assumption $L_{1} \cap L_{2}=K$, we have $\operatorname{Gal}\left(L(\sqrt{y}) \mid L_{2}\right) \simeq 2^{+} S_{4}$. We consider now the behaviour of y under the action of $\operatorname{Gal}\left(L_{2} \mid K\right)$. Let r, s, t be the non-trivial elements of $\operatorname{Gal}\left(L_{2} \mid K\right)$ fixing respectively $\sqrt{a b}, \sqrt{b}, \sqrt{a}$. By computation we obtain $y^{s} y=d^{2} h^{2} b$, where $h=m s_{2} p_{31} x^{3}-\left(p_{21}+s_{2}^{2} s_{3} p_{31}\right) x^{2}+\left(m n p_{31}-p_{11}\right) x+s_{2}^{3} s_{3} p_{31}+s_{2} p_{21}$. Now $y \in K(\sqrt{a})(x)$, so $y^{t}=y$ and $y^{r}=y^{s}$, so $L(\sqrt{y})$ is Galois over K. Now we have $(d h \sqrt{b})^{s}=d h \sqrt{b}$ and $(d h \sqrt{b})^{r}=-d h \sqrt{b}$, so $\operatorname{Gal}\left(L(\sqrt{y}) \mid L_{1}\right) \simeq D_{8}$, with $L(\sqrt{y}) \mid L_{1}(\sqrt{a b})$ cyclic, hence $\operatorname{Gal}(L(\sqrt{y}) \mid K) \simeq 2^{+} S_{4} * D_{8}$.

Proposition 3.2. Let the fields K and L and the elements $s_{2}, s_{3}, s_{4}, d, a, b, m, p_{i j}$ and y be as in Theorem 3.1. We have

$$
\operatorname{disc}(L(\sqrt{y}) \mid K)=d^{144} a^{96} b^{120} D^{12}
$$

where

$$
\begin{aligned}
D= & s_{4} p_{11}^{4}-s_{2} s_{3} p_{11}^{3} p_{21}+m s_{2} p_{11}^{2} p_{21}^{2}-m s_{3} p_{11} p_{21}^{3}+\left(m^{2}-s_{2} s_{3}^{2}\right) p_{21}^{4} \\
& +d p_{31}\left(p_{11}^{3}+m s_{2}^{2} p_{11}^{2} p_{31}+s_{3} p_{21}^{3}+m^{2} s_{2} p_{31} p_{21}^{2}\right)-d^{2} p_{31}^{3}\left(s_{2} s_{3} p_{21}+m p_{11}\right)+d^{3} p_{31}^{4}
\end{aligned}
$$

Proof. We have $\operatorname{disc}(L(\sqrt{y}) \mid K)=\operatorname{disc}(L \mid K)^{2} \cdot N_{L \mid K}(y)$ and $\operatorname{disc}(L \mid K)=(d a b)^{48}$. Now

$$
N_{L \mid K}(y)=\left(N_{L_{1}(\sqrt{a}) \mid K}(y)\right)^{2}
$$

and

$$
N_{L_{1}(\sqrt{a}) \mid K}(y)=N_{L_{1} \mid K}\left(N_{L_{1}(\sqrt{a}) \mid L_{1}}(y)\right)=N_{L_{1} \mid K}\left(d^{2} h^{2} b\right)=d^{48} b^{24} N_{L_{1} \mid K}(h)^{2}
$$

for h as in the proof of Theorem 3.1. By computation, we obtain $N_{L_{1} \mid K}(h)=D^{6}$, for D as in the statement.

4. Example

Let $K=k\left(\left(Z_{1}, Z_{2}, Z_{3}\right)\right)$ be the field of fractions of the formal power series ring in 3 variables over a field k of characteristic 3 . We consider the family of polynomials $f_{l}(X)=X^{4}+Z_{1} X^{2}+Z_{2} X+Z_{3}^{l} \in K[X]$, where l is a positive integer number, i.e. we are taking $s_{2}=Z_{1}, s_{3}=-Z_{2}, s_{4}=Z_{3}^{l}$. We can check that the polynomial f_{l} has Galois group S_{4} over K, for all $l \in \mathbb{N}$, and let L_{1} be the splitting field of f over K. We consider the extension $L_{2} \mid K$ generated by the elements $\sqrt{-d s_{2}}, \sqrt{-m s_{2}}, \sqrt{-d m}$. We can check that the elements $-d s_{2},-m s_{2},-d m,-s_{2}$, $-d m s_{2},-m$ are not squares in K and so, $L_{2} \mid K$ has Galois group V_{4} and is disjoint with $L_{1} \mid K$. Let $L=L_{1} \cdot L_{2}$. Let y be the element given by Theorem 3.1 for the matrix P, such that $p_{12}=p_{23}=p_{31}=1$ and the other entries are equal to zero. Then we have $\operatorname{Gal}(L(\sqrt{y}) \mid K) \simeq 2^{+} S_{4} * D_{8}$, with $L(\sqrt{y}) \mid L_{1}\left(\sqrt{-d s_{2}}\right)$ cyclic. By applying Proposition 3.2 , we see that the discriminant locus remains unchanged when going from L to $L(\sqrt{y})$.

Acknowledgements

Both authors acknowledge Polish grant N20103831/3261 and Spanish grant MTM2006-04895. T. Crespo acknowledges Spanish fellowship PR2006-0528.

References

[1] S.S. Abhyankar, Galois embeddings for linear groups, Trans. Amer. Math. Soc. 352 (2000) 3881-3912.
[2] S.S. Abhyankar, Resolution of singularities and modular Galois theory, Bull. Amer. Math. Soc. 38 (2001) 131-169.
[3] T. Crespo, Z. Hajto, On vectorial polynomials and coverings in characteristic 3, Proc. Amer. Math. Soc. 134 (2006) 23-29.
[4] D. Harbater, M. van der Put, R. Guralnick, Valued fields and covers in characteristic p, Fields Inst. Commun. 32 (2002) 175-204.
[5] T.Y. Lam, The Algebraic Theory of Quadratic Forms, Benjamin-Cummings Publ. Co., Reading, MA, 1973.

[^0]: E－mail addresses：teresa．crespo＠ub．edu（T．Crespo），hajto＠tcs．uj．edu．pl（Z．Hajto）．
 1631－073X／\＄－see front matter © 2008 Académie des sciences．Published by Elsevier Masson SAS．All rights reserved． doi：10．1016／j．crma．2008．04．010

