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Abstract

A model coupling differential equations and a sequence of constrained optimization problems is proposed for the simulation of
the evolution of a population of particles at equilibrium interacting through a common medium.

The first order optimality conditions of the optimization problems relaxed with barrier functions are coupled with the differential
equations into a system of differential-algebraic equations that is discretized in time with an implicit first order scheme. The
resulting system of nonlinear algebraic equations is solved at each time step with an interior-point/Newton method. The Newton
system is block-structured and solved with Schur complement techniques, in order to take advantage of its sparsity. Application to
the dynamics of a population of organic atmospheric aerosol particles is given to illustrate the evolution of particles of different
sizes. To cite this article: A. Caboussat, A. Leonard, C. R. Acad. Sci. Paris, Ser. I 346 (2008).
© 2008 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Résumé

Une méthode numérique pour un problème d’optimisation dynamique lié à une population de particules. Nous proposons
un modèle pour le calcul de l’évolution d’une population de particules. Ce modèle couple un système d’équations différentielles et
une séquence de problèmes d’optimisation sous contraintes.

Les conditions de premier ordre de chacun des problèmes d’optimisation et une discrétisation implicite des équations différen-
tielles forment un système d’équations non linéaires qui est traité avec une méthode de point intérieur, couplé à une itération de
Newton. Le système linéaire correspondant a une structure par blocs. Une méthode de résolution directe basée sur le complément
de Schur prend en compte la structure creuse de la matrice et permet de découpler les différentes particules du système. Des résul-
tats numériques pour une population de particules organiques montrent l’évolution de particules de différentes tailles. Pour citer
cet article : A. Caboussat, A. Leonard, C. R. Acad. Sci. Paris, Ser. I 346 (2008).
© 2008 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

The modeling of the dynamics of aerosol particles is a crucial step in the simulation of atmospheric processes [8,9].
The case of pure organic-containing particles is treated here.

A computational model for the mass-conservative dynamics of a population of particles in the gas phase is pre-
sented. The numerical method relies on a primal-dual interior-point method for the minimization of the Gibbs free
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energy in each particle [1], coupled with an implicit first order time discretization scheme for the computation of
the fluxes [2]. A direct decomposition method allows the efficient resolution of large, sparse Newton systems. The
decomposition relies on block LU decompositions and a Schur complement approach that is known to be efficient for
block-structured linear systems.

The model presented here couples the thermodynamic equilibrium in each particle and the dynamics between the
particles and the gas, at fixed temperature and pressure. Let N denote the number of particles in the system and ns the
number of substances in the gas-particle system. Let T be a given final time; for t ∈ (0, T ), let c0(t) = (c0,j )

ns

j=1 ∈ R
ns

be the concentration vector in unit of moles of the substances in the bulk gas phase and ci (t) = (ci,j )
ns

j=1 ∈ R
ns be the

concentration vector of these same substances in the particle number i, i = 1, . . . ,N . Let ri(t) > 0 be the radius of
particle i at time t ∈ (0, T ).

The internal composition of each particle i, i = 1, . . . ,N , at each time t ∈ (0, T ), for given feed vector ci (t) is the
solution of the constrained optimization problem arising from the minimization of the Gibbs free energy [1,8]:

min
(xi

α,yi
α)

Pi∑
α=1

yi
αgi

(
xi
α

)
, s.t. xi

α > 0, eT xi
α = 1, yi

α � 0, α = 1, . . . ,Pi, and
Pi∑

α=1

yi
αxi

α = ci (t), (1)

where eT = (1, . . . ,1), Pi is the number of possible aerosol phases, (xi
α)

Pi

α=1 are the mole-fraction concentration vec-

tors in phase α, (yα)
Pi

α=1 are the total numbers of moles in each phase α. The minimization problem (1) expresses the
liquid–liquid equilibrium inside an aerosol particle composed of organic species, subject to mass balance constraints.
The function gi is the molar Gibbs free energy function, modeled in this work by the UNIFAC model for organic
species. Depending on the atmospheric conditions, the equilibrium state consists of one or several liquid phases. The
number of phases Pi is a priori unknown.

The gradient ∇gi(xi
α(t)) is constant for all α = 1, . . . ,Pi , such that yi

α > 0 and denoted by λi (t) [1]. The evolution
of the concentration vectors c0(t), ci (t) is given by the nonlinear ordinary differential equations

d

dt
c0(t) = −

N∑
i=1

ϕ
(
ri(t)

)(
c0(t) − Γ e−λi (t)

)
, c0(0) = c0,0,

d

dt
ci (t) = ϕ

(
ri(t)

)(
c0(t) − Γ e−λi (t)

)
, ci (0) = ci,0, i = 1, . . . ,N,

(2)

where ϕ(r) is the mass transfer rate, Γ is a constant depending on vapor pressures and temperature. The Kelvin
effect due to the curvature of the surface of the particles is neglected. The mass transfer rate is given by ϕ(r) =
diag(4πDjr

1
λ/(αj r)+1 ), where Dj is the gas-phase molecular diffusivity of species j , λ is the air mean free path and

αj is the accommodation coefficient of the particle species j .
Each particle i is assumed to be spherical, with radius ri given by the approximated relation 4

3πri(t)
3 =∑ns

k=1
ci,k(t)mk

ρk
, where mk is the molecular weight and ρk is the density of the chemical component k.

Let t0, t1, . . . be discrete times with τ = tn+1 − tn and cn
i , (x

i
α)n, (yi

α)n,λn
i ,P

n
i and rn

i denote respectively approxi-
mations of ci (t

n),xi
α(tn), yi

α(tn),λi (t
n),Pi(t

n) and ri(t
n). The coupled system (1), (2) is discretized with a first order

Euler implicit discretization scheme.
The inequality constraints in (1) are relaxed with a log/barrier term associated to a penalty parameter ν > 0 [4]. By

replacing (1) by its first order optimality conditions, a system of differential-algebraic equations of index 1 is obtained
[2,7]. The radii ri are discretized explicitly in (2) due to different time scales [8]. The discretization of (1), (2) leads
to a system of nonlinear equations:
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i i
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Pn+1
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(
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> 0, α = 1, . . . ,P n+1

i , i = 1, . . . ,N.

The radii of the particles are then updated with the algebraic relation 4π
3 (rn+1

i )3 = ∑ns

k=1
cn+1
i,k mk

ρk
.

At each time step tn+1, a primal-dual interior-point algorithm [1,4] together with a Newton iteration, is used for
the resolution of the coupled problem (3). The algorithm produces a converging sequence of solutions for decreasing
values of ν [4]. For given ν, the system (3) is solved by a Newton iteration. The Newton system is solved with direct
methods to compute increments for the particle concentrations and internal variables, and the corresponding variables
are updated. Then ν is decreased until the norm of the residuals is smaller than a given tolerance. The Newton system
is sparse and block structured. If (b1, . . . , bN , b0)

T and (p1, . . . , pN,p0)
T denote the residuals and the increments

respectively, the Newton system reads:

⎡
⎢⎢⎢⎢⎣
H1 0 · · · 0 C1
0 H2 · · · 0 C2
...

...
. . .

...
...
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)
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[
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, (4)

and Bi = diag(−ϕ(rn
i )Γ e−λi )ET . The matrices Oν

i , resp. Ai , correspond to the projected Hessian of the objective
function, resp. the projected constraints, in (1) [1]. The converged iterate of the Newton method is set to be the
approximated solution at time tn+1.

The block-structured linear system (4) is solved with direct decomposition techniques [5,6]. A Schur complement
method decouples the blocks Hi corresponding to each particle and solves a sequence of smaller linear systems
related to a single particle. The Schur complement approach consists of building and solving the system Sp0 = B,
where S = H0 −∑N

i=1 DT
i H

−1
i Ci and B = b0 −∑N

i=1 DT
i H

−1
i bi , followed by the resolution of a sequence of systems

Hipi = bi − Cip0. Each individual matrix Hi is decomposed with an LU decomposition in order to take advantage
of the sparsity of the matrix and build on previously developed optimization techniques [1]. As the size of H0 and
S is equal to ns (and small compared to the number N of particles or blocks), the Schur complement approach is
appropriate and known to be efficient [5,6].

In order to avoid very small time steps, multi-scale methods, as well as numerical methods for the detection of
discontinuities in the evolution of the particles (see e.g. [3]) will be added in the future.

We consider the three-component system (ns = 3) with 1-hexacosanol (C26H54O), pinic acid (C9H14O4) and water
(H2O) at temperature 298.15 K and pressure 1 atm. A maximum of three phases occurs at equilibrium for suitable
compositions.

The evolution of three particles of radii ranging from 6.5 µm to 27 µm is considered, when the global system reaches
its equilibrium. Each particle undergoes phase separations. A time step of τ = 0.5d0 is chosen. Initial concentrations
are given by c1,0 = (1.79 × 100,4.21 × 100,15.63 × 100), c2,0 = (2.00 × 10−1,1.00 × 10−1,7.00 × 10−1), c3,0 =
(10.50 × 100,15.90 × 100,2.00 × 100) and c0,0 = (2.00 × 100,0.11 × 10−2,1.27 × 100).

Fig. 1 (left) shows the evolution of the normalized particle feed ci (t)/eT ci (t), i = 1,2,3, in the two-dimensional
phase diagram. Each vertex of this two-dimensional simplex (triangle) corresponds to a pure component without
mixing, while any point in the interior of the simplex corresponds to a specific mixing of water, pinic acid and
1-hexacosanol. The regions of the simplex where the equilibrium state is composed of P phases, P = 1,2,3, are
separated with solid black lines. Phase separations occur when the particle feed changes region, that is crosses the
solid black lines. Fig. 1 (middle) shows the total number of moles eT ci (t) in each particle, and Fig. 1 (right) illustrates
the evolution of ri(t), i = 1,2,3.
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Fig. 1. Dynamics for three particles and three components (water, pinic acid, 1-hexacosanol). Left: evolution of the normalized concentration vector
ci (t)/eT ci (t), i = 1,2,3, in the phase diagram; middle: evolution of the total number of moles eT ci (t), i = 1,2,3, in the particles; right: aerosol
growth and evolution of the radii ri (t), i = 1,2,3, of the particles.
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