

Available online at www.sciencedirect.com

C. R. Acad. Sci. Paris, Ser. I 346 (2008) 645-648

COMPTES RENDUS MATHEMATIQUE

http://france.elsevier.com/direct/CRASS1/

Harmonic Analysis/Mathematical Analysis

No characterization of generators in ℓ^p (1 of Fourier transform

Nir Lev, Alexander Olevskii

School of Mathematical sciences, Tel-Aviv University, Tel-Aviv 69978, Israel

Received 1 April 2008; accepted 23 April 2008

Available online 22 May 2008

Presented by Jean-Pierre Kahane

Abstract

Given 1 we construct two continuous functions f and g on the circle, with the following properties:

(i) They have the same set of zeros;

(ii) The Fourier transforms \hat{f} and \hat{g} both belong to $\ell^p(\mathbb{Z})$;

(iii) The translates of \hat{g} span the whole ℓ^p , but those of \hat{f} do not.

A similar result is true for $L^p(\mathbb{R})$. This should be contrasted with the Wiener theorems related to p = 1, 2. To cite this article: N. Lev, A. Olevskii, C. R. Acad. Sci. Paris, Ser. I 346 (2008).

© 2008 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Résumé

Les générateurs de ℓ^p (1 < p < 2) ne peuvent pas être caractérisés par une propriété de l'ensemble des zéros de leur transformées de Fourier. Étant donné 1 < p < 2 nous construisons deux fonctions continues sur le cercle, f et g, telles que : (i) Elles ont le même ensemble de zéros ;

(ii) Leurs transformées de Fourier appartiennent à $\ell^p(\mathbb{Z})$;

(iii) Les translatées de la transformée de Fourier de g engendrent ℓ^p , mais non celles de la transformées de Fourier de f.

Un résultat analogue est valable pour $L^p(\mathbb{R})$. Cela contraste avec les cas p = 1 ou 2, élucidés par Wiener. Pour citer cet article : N. Lev, A. Olevskii, C. R. Acad. Sci. Paris, Ser. I 346 (2008).

© 2008 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction and results

1.1. A function $F : \mathbb{Z} \to \mathbb{C}$ is called a cyclic vector, or a generator, in the space $\ell^p(\mathbb{Z})$ if the linear span of its translates is dense in the space. For p = 1 and 2, Wiener characterized the generators by the zero set Z_f of the Fourier transform

$$f(t) := \sum_{n \in \mathbb{Z}} F(n) e^{int}, \quad t \in \mathbb{T} := \mathbb{R}/2\pi\mathbb{Z},$$

1631-073X/\$ – see front matter © 2008 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved. doi:10.1016/j.crma.2008.04.017

E-mail addresses: levnir@post.tau.ac.il (N. Lev), olevskii@post.tau.ac.il (A. Olevskii).

as follows:

F is a generator in ℓ^2 if and only if f(t) is non-zero a.e. *F* is a generator in ℓ^1 if and only if f(t) has no zeros.

The same characterization holds for $L^2(\mathbb{R})$ and $L^1(\mathbb{R})$, see [7].

"Interpolating" between p = 1 and 2 one may expect that the generators in ℓ^p (or L^p), 1 , could be characterized by the condition that the zero set of the Fourier transform is "small" in a certain sense. In this context various metrical, arithmetical and other properties of the zero set for generators and non-generators have been studied by Beurling [1], Pollard [6], Herz [2], Newman [5] and other authors. However, none of these results provide a complete characterization of generators.

We will prove that such a characterization is impossible in principle. The following theorem is true:

Theorem 1. Given 1 one can find two continuous functions <math>f and g on the circle \mathbb{T} , with the following properties:

- (i) {t: f(t) = 0} = {t: g(t) = 0},
- (ii) $F := \hat{f}$ and $G := \hat{g}$ are both in $\ell^p(\mathbb{Z})$,
- (iii) G is a generator in ℓ^p , but F is not.

Remarks.

- 1. The role of the continuity condition is to make certain the concept of the "zero set".
- 2. In fact the function f in Theorem 1 can be chosen smooth. However, f and g cannot both be smooth.

The L^p version is also true:

Theorem 1'. Given 1 one can find two functions <math>F and G in $L^p(\mathbb{R})$ with the following properties. The Fourier transforms $\hat{F}(t)$, $\hat{G}(t)$ are continuous functions on $\hat{\mathbb{R}}$; they have the same zero set; the set of translates $\{G(x-u)\}$, $u \in \mathbb{R}$, spans the whole space, but $\{F(x-u)\}$ does not.

1.2. Denote by $A_r(\mathbb{T})$ $(1 \le r < \infty)$ the Banach space of functions or distributions on the circle with Fourier coefficients in $\ell^r(\mathbb{Z})$, endowed with the norm $||f||_{A_r} := ||\hat{f}||_{\ell^r}$. Our main result can be formulated as follows:

Theorem 2. For any $1 one can construct a compact <math>E \subset \mathbb{T}$, and a function $g \in C(\mathbb{T}) \cap A_p(\mathbb{T})$, such that:

- (a) $Z_g := \{t: g(t) = 0\} = E;$
- (b) The set $\{P(t)g(t)\}$, where P goes through all trigonometric polynomials, is dense in A_p ;
- (c) There is a (non-zero) distribution S, supported by E, which belongs to A_q , q = p/(p-1).

Clearly (b) means that \hat{g} is a generator. On the other hand (c) is equivalent to the fact that no Fourier transform of a smooth function f vanishing on E, could be a generator. So Theorem 1 is a direct consequence of Theorem 2. Theorem 1' also follows.

Theorem 2 strengthens our result from [4], where we constructed a compact E which supports a distribution belonging to A_q (q > 2), but does not support such a measure. Clearly the compact E from Theorem 2 satisfies this property.

The proof of Theorem 2 sketched below is based on a modification and development of the approach used in [4].

2. Riesz-type products

2.1. As in [4] we consider finite Riesz products, but instead of the cosine function we now use a certain trigonometric polynomial φ , taken from the following:

Lemma 1. Given $0 < \eta < 1$ there is a real trigonometric polynomial $\varphi = \varphi_{\eta}$ such that

$$\hat{\varphi}(0) = 0, \quad \|\varphi\|_{\infty} = 1, \quad \|\varphi\|_{L^2} > \frac{9}{10}, \quad \|\varphi\|_{A_p} \leq C\eta^{-1}, \quad \|\varphi\|_{A_q} \leq C\eta$$

(here C is an absolute constant).

2.2. For every $s \in I := (\frac{8}{10}, \frac{9}{10})$ define

$$\lambda_s(t) = \prod_{j=1}^N (1 + s\varphi(\nu^j t)).$$

After opening the brackets one gets

$$\lambda_{s}(t) = 1 + \sum \left\{ s^{l} \prod_{k_{j} \neq 0} \hat{\varphi}(k_{j}) \right\} e^{i(k_{1}\nu + k_{2}\nu^{2} + \dots + k_{N}\nu^{N})t}$$

where the sum is taken over all non-zero vectors $k = (k_1, k_2, ..., k_N)$ such that $|k_j| \leq \deg \varphi$, l = l(k) > 0, and all the frequencies are distinct provided that $\nu > 2 \deg \varphi$. We then integrate λ_s against a measure ρ , supported by *I*, which has the zero moment equal to 1 and all other moments less than δ by modulus (see [3], p. 214). The A_q norm of the resulting function,

$$\lambda(t) = \int \lambda_s(t) \, \mathrm{d}\rho(s),$$

could be estimated as

$$\sum_{n\neq 0} \left| \hat{\lambda}(n) \right|^q < \delta \sum_{k_j \neq 0} \prod_{k_j \neq 0} \left| \hat{\varphi}(k_j) \right|^q < \delta \left(1 + \|\varphi\|_{A_q}^q \right)^N.$$

3. Concentration

3.1. Define a trigonometric polynomial

$$X(t) = \frac{1}{N} \sum_{j=1}^{N} \varphi(v^{j}t).$$

One can see that for a sufficiently large ν , depending on N and η , the members of this polynomial are "almost" stochastically independent on \mathbb{T} with respect to the probability measure

$$d\mu_s(t) := \lambda_s(t) dt/2\pi$$
.

The classical Bernstein inequality thus implies the exponential estimate

$$\operatorname{prob}(|X(t) - \mathcal{E}X| > \alpha) < 3\exp(-\frac{1}{8}\alpha^2 N), \quad \nu > \nu(N, \eta),$$

which holds for every $s \in I$. Using the estimates

$$\mathcal{E}X > \frac{5}{8}, \qquad \lambda_s(t) \leqslant \exp(sNX(t))$$

one can prove:

Lemma 2. Given $\delta > 0$ there is $N(\delta)$ such that, for every $N \ge N(\delta)$ and $\nu > \nu(N, \eta)$,

$$\int_{|z| \le X(t) < \frac{1}{40}} \lambda_s^2(t) \frac{\mathrm{d}t}{2\pi} < \delta \quad (s \in I).$$

3.2. Now we can formulate the main lemma:

Lemma 3. Given $\varepsilon > 0$ there exist a compact K (a finite union of segments) on the circle, a smooth function F and a real trigonometric polynomial X such that:

- (i) *F* is supported by *K*, $||1 F||_{A_q} < \varepsilon$,
- (ii) $||X||_{\infty} \leq 1$, $||X||_{A_p} < \varepsilon$, $X(t) > \frac{1}{50}$ on K.

The proof follows the same line as the proof of Lemma 3.2 in [4], but here it takes advantage of the better estimates for λ and X.

4. Approximations

4.1. Lemma 3 allows us to produce successive approximations to the function g and the distribution S of Theorem 2. It is now possible to define inductively a sequence of smooth functions $\{f_n\}$, supported by compacts K_n (each next compact is embedded into the previous one), such that

$$f_0 = 1, \qquad \|f_n - f_{n-1}\|_{A_n} < 2^{-n-1}, \tag{1}$$

and simultaneously a sequence of non-zero trigonometric polynomials $\{g_n\}$ satisfying

$$\|g_n - g_{n-1}\|_{\infty} < c^{n-1},$$
(2)
$$\sup_{t \in K_n} |g_n(t)| < c^n,$$
(3)

where the constant $c = \frac{99}{100}$.

Let us describe the n-th step of the induction. First we choose a trigonometric polynomial h such that

$$\sup_{t \in K_n} |g_n(t) - h(t)| < (1 - c)c^n, \qquad \|h\|_{\infty} < c^n.$$

Then taking a sufficiently small ε we use Lemma 3 to choose K, F and X, and set

$$f_{n+1} := f_n \cdot F, \qquad K_{n+1} := K_n \cap K, \qquad g_{n+1} := g_n - h \cdot X.$$

4.2. The estimate (1) implies that f_n will converge in A_q to a distribution S supported by $\bigcap_{n=1}^{\infty} K_n$. On the other hand g_n converges uniformly to some $g \in C(\mathbb{T})$, due to (2), and g vanishes on the support of S due to (3). Taking $E := Z_g$ one gets (a) and (c) in Theorem 2. Finally, notice that by taking ε small enough on each step of the induction, we may have

 $||g_{n+1} - g_n||_{A_n}$ decrease arbitrarily fast.

Since g_n is a non-zero trigonometric polynomial, there is a polynomial $P_n(t)$ such that $||1 - P_n \cdot g_n||_{A_p} < 1/n$, and (4) allows us to replace here g_n by g. This easily implies (b).

(4)

References

- [1] A. Beurling, On a closure problem, Ark. Mat. 1 (1951) 301–303.
- [2] C.S. Herz, A note on the span of translations in L^p , Proc. Amer. Math. Soc. 8 (1957) 724–727.
- [3] J.-P. Kahane, R. Salem, Ensembles parfaits et séries trigonométriques, second ed., Hermann, 1994.
- [4] N. Lev, A. Olevskii, Piatetski–Shapiro phenomenon in the uniqueness problem, C. R. Acad. Sci. Paris, Ser. I 340 (2005) 793–798.
- [5] D.J. Newman, The closure of translates in l^p , Amer. J. Math. 86 (1964) 651–667.
- [6] H. Pollard, The closure of translations in L^p, Proc. Amer. Math. Soc. 2 (1951) 100–104.
- [7] N. Wiener, The Fourier Integral and Certain of its Applications, Cambridge University Press, 1933. Reprint, Dover Publications, 1959.

 $\{t\}$