Harmonic Analysis/Mathematical Analysis

No characterization of generators in $\ell^{p}(1<p<2)$ by zero set of Fourier transform

Nir Lev, Alexander Olevskii
School of Mathematical sciences, Tel-Aviv University, Tel-Aviv 69978, Israel

Received 1 April 2008; accepted 23 April 2008
Available online 22 May 2008
Presented by Jean-Pierre Kahane

Abstract

Given $1<p<2$ we construct two continuous functions f and g on the circle, with the following properties: (i) They have the same set of zeros; (ii) The Fourier transforms \hat{f} and \hat{g} both belong to $\ell^{p}(\mathbb{Z})$; (iii) The translates of \hat{g} span the whole ℓ^{p}, but those of \hat{f} do not.

A similar result is true for $L^{p}(\mathbb{R})$. This should be contrasted with the Wiener theorems related to $p=1,2$. To cite this article: N. Lev, A. Olevskii, C. R. Acad. Sci. Paris, Ser. I 346 (2008). © 2008 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Résumé

Les générateurs de $\ell^{p}(1<p<2)$ ne peuvent pas être caractérisés par une propriété de l'ensemble des zéros de leur transformées de Fourier. Étant donné $1<p<2$ nous construisons deux fonctions continues sur le cercle, f et g, telles que :
(i) Elles ont le même ensemble de zéros;
(ii) Leurs transformées de Fourier appartiennent à $\ell^{p}(\mathbb{Z})$;
(iii) Les translatées de la transformée de Fourier de g engendrent ℓ^{p}, mais non celles de la transformées de Fourier de f.

Un résultat analogue est valable pour $L^{p}(\mathbb{R})$. Cela contraste avec les cas $p=1$ ou 2 , élucidés par Wiener. Pour citer cet article : N. Lev, A. Olevskii, C. R. Acad. Sci. Paris, Ser. I 346 (2008).
© 2008 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction and results

1.1. A function $F: \mathbb{Z} \rightarrow \mathbb{C}$ is called a cyclic vector, or a generator, in the space $\ell^{p}(\mathbb{Z})$ if the linear span of its translates is dense in the space. For $p=1$ and 2, Wiener characterized the generators by the zero set Z_{f} of the Fourier transform

$$
f(t):=\sum_{n \in \mathbb{Z}} F(n) \mathrm{e}^{\mathrm{int}}, \quad t \in \mathbb{T}:=\mathbb{R} / 2 \pi \mathbb{Z}
$$

[^0]as follows:
F is a generator in ℓ^{2} if and only if $f(t)$ is non-zero a.e.
F is a generator in ℓ^{1} if and only if $f(t)$ has no zeros.
The same characterization holds for $L^{2}(\mathbb{R})$ and $L^{1}(\mathbb{R})$, see [7].
"Interpolating" between $p=1$ and 2 one may expect that the generators in ℓ^{p} (or L^{p}), $1<p<2$, could be characterized by the condition that the zero set of the Fourier transform is "small" in a certain sense. In this context various metrical, arithmetical and other properties of the zero set for generators and non-generators have been studied by Beurling [1], Pollard [6], Herz [2], Newman [5] and other authors. However, none of these results provide a complete characterization of generators.

We will prove that such a characterization is impossible in principle. The following theorem is true:

Theorem 1. Given $1<p<2$ one can find two continuous functions f and g on the circle \mathbb{T}, with the following properties:
(i) $\{t: f(t)=0\}=\{t: g(t)=0\}$,
(ii) $F:=\hat{f}$ and $G:=\hat{g}$ are both in $\ell^{p}(\mathbb{Z})$,
(iii) G is a generator in ℓ^{p}, but F is not.

Remarks.

1. The role of the continuity condition is to make certain the concept of the "zero set".
2. In fact the function f in Theorem 1 can be chosen smooth. However, f and g cannot both be smooth.

The L^{p} version is also true:

Theorem 1^{\prime}. Given $1<p<2$ one can find two functions F and G in $L^{p}(\mathbb{R})$ with the following properties. The Fourier transforms $\hat{F}(t), \hat{G}(t)$ are continuous functions on $\hat{\mathbb{R}}$; they have the same zero set; the set of translates $\{G(x-u)\}$, $u \in \mathbb{R}$, spans the whole space, but $\{F(x-u)\}$ does not.
1.2. Denote by $A_{r}(\mathbb{T})(1 \leqslant r<\infty)$ the Banach space of functions or distributions on the circle with Fourier coefficients in $\ell^{r}(\mathbb{Z})$, endowed with the norm $\|f\|_{A_{r}}:=\|\hat{f}\|_{\ell^{r}}$. Our main result can be formulated as follows:

Theorem 2. For any $1<p<2$ one can construct a compact $E \subset \mathbb{T}$, and a function $g \in C(\mathbb{T}) \cap A_{p}(\mathbb{T})$, such that:
(a) $Z_{g}:=\{t: g(t)=0\}=E$;
(b) The set $\{P(t) g(t)\}$, where P goes through all trigonometric polynomials, is dense in A_{p};
(c) There is a (non-zero) distribution S, supported by E, which belongs to $A_{q}, q=p /(p-1)$.

Clearly (b) means that \hat{g} is a generator. On the other hand (c) is equivalent to the fact that no Fourier transform of a smooth function f vanishing on E, could be a generator. So Theorem 1 is a direct consequence of Theorem 2. Theorem 1' also follows.

Theorem 2 strengthens our result from [4], where we constructed a compact E which supports a distribution belonging to $A_{q}(q>2)$, but does not support such a measure. Clearly the compact E from Theorem 2 satisfies this property.

The proof of Theorem 2 sketched below is based on a modification and development of the approach used in [4].

2. Riesz-type products

2.1. As in [4] we consider finite Riesz products, but instead of the cosine function we now use a certain trigonometric polynomial φ, taken from the following:

Lemma 1. Given $0<\eta<1$ there is a real trigonometric polynomial $\varphi=\varphi_{\eta}$ such that

$$
\hat{\varphi}(0)=0, \quad\|\varphi\|_{\infty}=1, \quad\|\varphi\|_{L^{2}}>\frac{9}{10}, \quad\|\varphi\|_{A_{p}} \leqslant C \eta^{-1}, \quad\|\varphi\|_{A_{q}} \leqslant C \eta
$$

(here C is an absolute constant).
2.2. For every $s \in I:=\left(\frac{8}{10}, \frac{9}{10}\right)$ define

$$
\lambda_{s}(t)=\prod_{j=1}^{N}\left(1+s \varphi\left(v^{j} t\right)\right)
$$

After opening the brackets one gets

$$
\lambda_{s}(t)=1+\sum\left\{s^{l} \prod_{k_{j} \neq 0} \hat{\varphi}\left(k_{j}\right)\right\} \mathrm{e}^{\mathrm{i}\left(k_{1} v+k_{2} v^{2}+\cdots+k_{N} v^{N}\right) t}
$$

where the sum is taken over all non-zero vectors $k=\left(k_{1}, k_{2}, \ldots, k_{N}\right)$ such that $\left|k_{j}\right| \leqslant \operatorname{deg} \varphi, l=l(k)>0$, and all the frequencies are distinct provided that $v>2 \operatorname{deg} \varphi$. We then integrate λ_{s} against a measure ρ, supported by I, which has the zero moment equal to 1 and all other moments less than δ by modulus (see [3], p. 214). The A_{q} norm of the resulting function,

$$
\lambda(t)=\int \lambda_{s}(t) \mathrm{d} \rho(s)
$$

could be estimated as

$$
\sum_{n \neq 0}|\hat{\lambda}(n)|^{q}<\delta \sum \prod_{k_{j} \neq 0}\left|\hat{\varphi}\left(k_{j}\right)\right|^{q}<\delta\left(1+\|\varphi\|_{A_{q}}^{q}\right)^{N}
$$

3. Concentration

3.1. Define a trigonometric polynomial

$$
X(t)=\frac{1}{N} \sum_{j=1}^{N} \varphi\left(v^{j} t\right)
$$

One can see that for a sufficiently large v, depending on N and η, the members of this polynomial are "almost" stochastically independent on \mathbb{T} with respect to the probability measure

$$
\mathrm{d} \mu_{s}(t):=\lambda_{s}(t) \mathrm{d} t / 2 \pi
$$

The classical Bernstein inequality thus implies the exponential estimate

$$
\operatorname{prob}(|X(t)-\varepsilon X|>\alpha)<3 \exp \left(-\frac{1}{8} \alpha^{2} N\right), \quad v>v(N, \eta)
$$

which holds for every $s \in I$. Using the estimates

$$
\mathcal{E} X>\frac{5}{8}, \quad \lambda_{s}(t) \leqslant \exp (s N X(t))
$$

one can prove:

Lemma 2. Given $\delta>0$ there is $N(\delta)$ such that, for every $N \geqslant N(\delta)$ and $v>v(N, \eta)$,

$$
\int_{\left.: X(t)<\frac{1}{40}\right\}} \lambda_{s}^{2}(t) \frac{\mathrm{d} t}{2 \pi}<\delta \quad(s \in I) .
$$

3.2. Now we can formulate the main lemma:

Lemma 3. Given $\varepsilon>0$ there exist a compact K (a finite union of segments) on the circle, a smooth function F and a real trigonometric polynomial X such that:
(i) F is supported by $K,\|1-F\|_{A_{q}}<\varepsilon$,
(ii) $\|X\|_{\infty} \leqslant 1,\|X\|_{A_{p}}<\varepsilon, X(t)>\frac{1}{50}$ on K.

The proof follows the same line as the proof of Lemma 3.2 in [4], but here it takes advantage of the better estimates for λ and X.

4. Approximations

4.1. Lemma 3 allows us to produce successive approximations to the function g and the distribution S of Theorem 2. It is now possible to define inductively a sequence of smooth functions $\left\{f_{n}\right\}$, supported by compacts K_{n} (each next compact is embedded into the previous one), such that

$$
\begin{equation*}
f_{0}=1, \quad\left\|f_{n}-f_{n-1}\right\|_{A_{q}}<2^{-n-1} \tag{1}
\end{equation*}
$$

and simultaneously a sequence of non-zero trigonometric polynomials $\left\{g_{n}\right\}$ satisfying

$$
\begin{align*}
& \left\|g_{n}-g_{n-1}\right\|_{\infty}<c^{n-1}, \tag{2}\\
& \sup _{t \in K_{n}}\left|g_{n}(t)\right|<c^{n}, \tag{3}
\end{align*}
$$

where the constant $c=\frac{99}{100}$.
Let us describe the n-th step of the induction. First we choose a trigonometric polynomial h such that

$$
\sup _{t \in K_{n}}\left|g_{n}(t)-h(t)\right|<(1-c) c^{n}, \quad\|h\|_{\infty}<c^{n} .
$$

Then taking a sufficiently small ε we use Lemma 3 to choose K, F and X, and set

$$
f_{n+1}:=f_{n} \cdot F, \quad K_{n+1}:=K_{n} \cap K, \quad g_{n+1}:=g_{n}-h \cdot X .
$$

4.2. The estimate (1) implies that f_{n} will converge in A_{q} to a distribution S supported by $\bigcap_{n=1}^{\infty} K_{n}$. On the other hand g_{n} converges uniformly to some $g \in C(\mathbb{T})$, due to (2), and g vanishes on the support of S due to (3). Taking $E:=Z_{g}$ one gets (a) and (c) in Theorem 2. Finally, notice that by taking ε small enough on each step of the induction, we may have

$$
\begin{equation*}
\left\|g_{n+1}-g_{n}\right\|_{A_{p}} \text { decrease arbitrarily fast. } \tag{4}
\end{equation*}
$$

Since g_{n} is a non-zero trigonometric polynomial, there is a polynomial $P_{n}(t)$ such that $\left\|1-P_{n} \cdot g_{n}\right\|_{A_{p}}<1 / n$, and (4) allows us to replace here g_{n} by g. This easily implies (b).

References

[1] A. Beurling, On a closure problem, Ark. Mat. 1 (1951) 301-303.
[2] C.S. Herz, A note on the span of translations in L^{p}, Proc. Amer. Math. Soc. 8 (1957) 724-727.
[3] J.-P. Kahane, R. Salem, Ensembles parfaits et séries trigonométriques, second ed., Hermann, 1994.
[4] N. Lev, A. Olevskii, Piatetski-Shapiro phenomenon in the uniqueness problem, C. R. Acad. Sci. Paris, Ser. I 340 (2005) $793-798$.
[5] D.J. Newman, The closure of translates in l^{p}, Amer. J. Math. 86 (1964) 651-667.
[6] H. Pollard, The closure of translations in L^{p}, Proc. Amer. Math. Soc. 2 (1951) 100-104.
[7] N. Wiener, The Fourier Integral and Certain of its Applications, Cambridge University Press, 1933. Reprint, Dover Publications, 1959.

[^0]: E-mail addresses: levnir@post.tau.ac.il (N. Lev), olevskii@post.tau.ac.il (A. Olevskii).

