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Abstract

Given 1 < p < 2 we construct two continuous functions f and g on the circle, with the following properties:
(i) They have the same set of zeros;
(ii) The Fourier transforms f̂ and ĝ both belong to �p(Z);
(iii) The translates of ĝ span the whole �p , but those of f̂ do not.
A similar result is true for Lp(R). This should be contrasted with the Wiener theorems related to p = 1,2. To cite this article:
N. Lev, A. Olevskii, C. R. Acad. Sci. Paris, Ser. I 346 (2008).
© 2008 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Résumé

Les générateurs de �p (1 < p < 2) ne peuvent pas être caractérisés par une propriété de l’ensemble des zéros de leur
transformées de Fourier. Étant donné 1 < p < 2 nous construisons deux fonctions continues sur le cercle, f et g, telles que :
(i) Elles ont le même ensemble de zéros ;
(ii) Leurs transformées de Fourier appartiennent à �p(Z) ;
(iii) Les translatées de la transformée de Fourier de g engendrent �p , mais non celles de la transformées de Fourier de f .
Un résultat analogue est valable pour Lp(R). Cela contraste avec les cas p = 1 ou 2, élucidés par Wiener. Pour citer cet ar-
ticle : N. Lev, A. Olevskii, C. R. Acad. Sci. Paris, Ser. I 346 (2008).
© 2008 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction and results

1.1. A function F : Z → C is called a cyclic vector, or a generator, in the space �p(Z) if the linear span of its
translates is dense in the space. For p = 1 and 2, Wiener characterized the generators by the zero set Zf of the Fourier
transform

f (t) :=
∑
n∈Z

F(n)eint, t ∈ T := R/2πZ,
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as follows:

F is a generator in �2 if and only if f (t) is non-zero a.e.

F is a generator in �1 if and only if f (t) has no zeros.

The same characterization holds for L2(R) and L1(R), see [7].
“Interpolating” between p = 1 and 2 one may expect that the generators in �p (or Lp), 1 < p < 2, could be

characterized by the condition that the zero set of the Fourier transform is “small” in a certain sense. In this context
various metrical, arithmetical and other properties of the zero set for generators and non-generators have been studied
by Beurling [1], Pollard [6], Herz [2], Newman [5] and other authors. However, none of these results provide a
complete characterization of generators.

We will prove that such a characterization is impossible in principle. The following theorem is true:

Theorem 1. Given 1 < p < 2 one can find two continuous functions f and g on the circle T, with the following
properties:

(i) {t : f (t) = 0} = {t : g(t) = 0},
(ii) F := f̂ and G := ĝ are both in �p(Z),

(iii) G is a generator in �p , but F is not.

Remarks.

1. The role of the continuity condition is to make certain the concept of the “zero set”.
2. In fact the function f in Theorem 1 can be chosen smooth. However, f and g cannot both be smooth.

The Lp version is also true:

Theorem 1′. Given 1 < p < 2 one can find two functions F and G in Lp(R) with the following properties. The Fourier
transforms F̂ (t), Ĝ(t) are continuous functions on R̂; they have the same zero set; the set of translates {G(x − u)},
u ∈ R, spans the whole space, but {F(x − u)} does not.

1.2. Denote by Ar(T) (1 � r < ∞) the Banach space of functions or distributions on the circle with Fourier
coefficients in �r(Z), endowed with the norm ‖f ‖Ar := ‖f̂ ‖�r . Our main result can be formulated as follows:

Theorem 2. For any 1 < p < 2 one can construct a compact E ⊂ T, and a function g ∈ C(T) ∩ Ap(T), such that:

(a) Zg := {t : g(t) = 0} = E;

(b) The set {P(t)g(t)}, where P goes through all trigonometric polynomials, is dense in Ap;

(c) There is a (non-zero) distribution S, supported by E, which belongs to Aq , q = p/(p − 1).

Clearly (b) means that ĝ is a generator. On the other hand (c) is equivalent to the fact that no Fourier transform
of a smooth function f vanishing on E, could be a generator. So Theorem 1 is a direct consequence of Theorem 2.
Theorem 1′ also follows.

Theorem 2 strengthens our result from [4], where we constructed a compact E which supports a distribution
belonging to Aq (q > 2), but does not support such a measure. Clearly the compact E from Theorem 2 satisfies this
property.

The proof of Theorem 2 sketched below is based on a modification and development of the approach used in [4].



N. Lev, A. Olevskii / C. R. Acad. Sci. Paris, Ser. I 346 (2008) 645–648 647
2. Riesz-type products

2.1. As in [4] we consider finite Riesz products, but instead of the cosine function we now use a certain trigono-
metric polynomial ϕ, taken from the following:

Lemma 1. Given 0 < η < 1 there is a real trigonometric polynomial ϕ = ϕη such that

ϕ̂(0) = 0, ‖ϕ‖∞ = 1, ‖ϕ‖L2 >
9

10
, ‖ϕ‖Ap � Cη−1, ‖ϕ‖Aq � Cη

(here C is an absolute constant).

2.2. For every s ∈ I := ( 8
10 , 9

10 ) define

λs(t) =
N∏

j=1

(
1 + sϕ(νj t)

)
.

After opening the brackets one gets

λs(t) = 1 +
∑{

sl
∏
kj 	=0

ϕ̂(kj )

}
ei(k1ν+k2ν

2+···+kNνN )t ,

where the sum is taken over all non-zero vectors k = (k1, k2, . . . , kN) such that |kj | � degϕ, l = l(k) > 0, and all the
frequencies are distinct provided that ν > 2 degϕ. We then integrate λs against a measure ρ, supported by I , which
has the zero moment equal to 1 and all other moments less than δ by modulus (see [3], p. 214). The Aq norm of the
resulting function,

λ(t) =
∫

λs(t)dρ(s),

could be estimated as∑
n	=0

∣∣λ̂(n)
∣∣q < δ

∑ ∏
kj 	=0

∣∣ϕ̂(kj )
∣∣q < δ

(
1 + ‖ϕ‖q

Aq

)N
.

3. Concentration

3.1. Define a trigonometric polynomial

X(t) = 1

N

N∑
j=1

ϕ(νj t).

One can see that for a sufficiently large ν, depending on N and η, the members of this polynomial are “almost”
stochastically independent on T with respect to the probability measure

dμs(t) := λs(t)dt/2π.

The classical Bernstein inequality thus implies the exponential estimate

prob
(∣∣X(t) − EX

∣∣ > α
)
< 3 exp

(
−1

8
α2N

)
, ν > ν(N,η),

which holds for every s ∈ I . Using the estimates

EX >
5

8
, λs(t) � exp

(
sNX(t)

)
one can prove:
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Lemma 2. Given δ > 0 there is N(δ) such that, for every N � N(δ) and ν > ν(N,η),∫

{t : X(t)< 1
40 }

λ2
s (t)

dt

2π
< δ (s ∈ I ).

3.2. Now we can formulate the main lemma:

Lemma 3. Given ε > 0 there exist a compact K (a finite union of segments) on the circle, a smooth function F and a
real trigonometric polynomial X such that:

(i) F is supported by K , ‖1 − F‖Aq < ε,

(ii) ‖X‖∞ � 1, ‖X‖Ap < ε, X(t) > 1
50 on K .

The proof follows the same line as the proof of Lemma 3.2 in [4], but here it takes advantage of the better estimates
for λ and X.

4. Approximations

4.1. Lemma 3 allows us to produce successive approximations to the function g and the distribution S of Theo-
rem 2. It is now possible to define inductively a sequence of smooth functions {fn}, supported by compacts Kn (each
next compact is embedded into the previous one), such that

f0 = 1, ‖fn − fn−1‖Aq < 2−n−1, (1)

and simultaneously a sequence of non-zero trigonometric polynomials {gn} satisfying

‖gn − gn−1‖∞ < cn−1, (2)

sup
t∈Kn

∣∣gn(t)
∣∣ < cn, (3)

where the constant c = 99
100 .

Let us describe the n-th step of the induction. First we choose a trigonometric polynomial h such that

sup
t∈Kn

∣∣gn(t) − h(t)
∣∣ < (1 − c)cn, ‖h‖∞ < cn.

Then taking a sufficiently small ε we use Lemma 3 to choose K , F and X, and set

fn+1 := fn · F, Kn+1 := Kn ∩ K, gn+1 := gn − h · X.

4.2. The estimate (1) implies that fn will converge in Aq to a distribution S supported by
⋂∞

n=1 Kn. On the other
hand gn converges uniformly to some g ∈ C(T), due to (2), and g vanishes on the support of S due to (3). Taking
E := Zg one gets (a) and (c) in Theorem 2. Finally, notice that by taking ε small enough on each step of the induction,
we may have

‖gn+1 − gn‖Ap decrease arbitrarily fast. (4)

Since gn is a non-zero trigonometric polynomial, there is a polynomial Pn(t) such that ‖1 − Pn · gn‖Ap < 1/n, and
(4) allows us to replace here gn by g. This easily implies (b).
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