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Abstract

Quasi-all continuous functions have a zero set which is a perfect Kronecker set with Hausdorff dimension zero. To cite this
article: T. Körner, C. R. Acad. Sci. Paris, Ser. I 346 (2008).
© 2008 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Résumé

Ensembles de zéros et catégorie de Baire. Quasi-surement, les zéros d’une fonction continue forment un ensemble de Krone-
cker parfait de dimension d’Haudorff zéro. Pour citer cet article : T. Körner, C. R. Acad. Sci. Paris, Ser. I 346 (2008).
© 2008 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

We work on T = R/Z and write C(T) for the space of continuous functions f : T → R. The zero set Zf of such a
function is defined by

Zf = {
t ∈ T: f (t) = 0

}
.

The zero sets of random functions have been extensively studied (see for example [1] Chapter 14). Kahane asks a
natural question. What can be said if we replace probabilistic by Baire category considerations?

Theorem 1.1. Let h : [0,1] → [0,∞) be continuous and strictly increasing with h(0) = 0. Consider the space of real
continuous functions C(T) under the uniform norm. Quasi-all f ∈ C(T) have a zero set which is a perfect Kronecker
set of Hausdorff h-measure 0.

(Note that the empty set is perfect, Kronecker and of Hausdorff h-measure 0.)
In fact we can prove a stronger result:
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Lemma 1.2. Let Aq be set of first category in T
q with the usual Euclidean metric [q � 1] and let

A =
∞⋃

q=1

{
x ∈ TN: (x1, x2, . . . , xq) ∈ Aq

}
.

Consider the space of real continuous functions C(T) under the uniform norm. Quasi-all f ∈ C(T) have a zero set
which is a perfect Kronecker set and satisfies the following condition: If x1, x2, . . . are distinct zeros of f , then x /∈ A.

To see how Lemma 1.2 can be used, we prove the following result:

Lemma 1.3. Let h : [0,1] → [0,∞) be continuous and strictly increasing with h(0) = 0. Quasi-always, the group
generated by Zf has Hausdorff h-measure zero.

To obtain Lemma 1.3 from Lemma 1.2 we argue as follows. We can find closed nowhere dense sets Bu such that
T \ ⋃∞

u=1 Bu has Hausdorff h-measure zero. If

m = (m1,m2, . . . ,mq) ∈ Λ(q) = (
Z \ {0})q

and r � q + 2, we write B(q,m, r, u) for the set of x ∈ T
q such that |xi − xj | � 1/r for i �= j and

∑q

j=1 mjxj ∈ Bu.
A Bolzano–Weierstrass argument shows that B(q,m, r, u) is closed and the fact that Bu is nowhere dense shows that
B(q,m, r, u) is nowhere dense. Thus

Aq =
∞⋃

u=1

⋃

m∈Λ(q)

∞⋃

r=q+2

B(q,m, r, u)

is of first category. The group generated by the complement of A lies in (T \ ⋃∞
q=1 Bq) ∪ {0} and so has Hausdorff

h-measure zero.
The same ideas are used in deeper context in [2].

2. Proof of Theorem 1.1

We start by showing that, quasi-always, Zf is perfect, that is to say, contains no isolated points.

Lemma 2.1.

(i) If m � r � 1, let Em,r be the set of f ∈ C(T) such that the interval [(r − 1)/m, r/m] has at least one of the
following three properties.
(a) Zf ∩ [(r − 1)/m, r/m] is empty.
(b) We can find (r − 1)/m � x1 < x2 < x3 � r/m with f (x1), f (x3) < 0 < f (x2).
(c) We can find (r − 1)/m � x1 < x2 < x3 � r/m with f (x1), f (x3) > 0 > f (x2).
Em,r is open and dense.

(ii) Quasi-always, Zf contains no isolated points.

The proof of part (i) is routine. To obtain (ii) we observe that, if Zf contains an isolated point, we can find an m

and an 1 � r � m such that f /∈ Em,r .

Lemma 2.2. Using the notation and hypotheses of Lemma 1.2, quasi-all f ∈ C(T) have the property that, if
x1, x2, . . . are distinct zeros of f , then x /∈ A.

By a standard category argument, it suffices to show that, quasi-always, Zf has the property that, whenever x1,
x2, . . . , xq are distinct zeros of f , then x = (x1, x2, . . . , xq) /∈ Aq . The same argument shows that we may suppose
Aq = Fq a closed nowhere dense subset of T

q .
If n � q + 2, let write Gn for the set of f ∈ C(T) with the property that, whenever x ∈ T

q satisfies |xi − xj | � 1/n,
we have x ∈ Fq . A Bolzano–Weierstrass argument establishes that the complement of Gn is closed and so Gn is open.
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On the other hand, if ε > 0 and f ∈ C(T), we can find a piecewise linear, nowhere locally constant g ∈ C(T)

with ‖g − f ‖∞ < ε/2. Since Zg is finite, we can use the fact that Fq is nowhere dense to find a piecewise linear,
nowhere locally constant h ∈ C(T) with ‖g − h‖∞ < ε/2 such that h ∈ Gn. Thus Gn is open and everywhere dense.
The required result follows by considering

⋂∞
n=q+2 Gn.

Finally we prove:

Lemma 2.3. Using the notation and hypotheses of Lemma 1.2, quasi-all f ∈ C(T) have a zero set which is Kronecker.

Theorem 9 of [2] shows that we cannot deduce Lemma 2.3 from Lemma 2.2.
We recall two definitions:

Definition 2.4.

(i) We write S(T) for the set of φ ∈ C(T) such that |φ(t)| = 1 for all t ∈ T.
(ii) A closed set E in T is said to be Kronecker if, given φ ∈ S(T) and ε > 0, we can find an N ∈ Z such that

|exp(2π iNt) − φ(t)| < ε for all t ∈ E.

Standard arguments show that S(T) has a countable dense subset φ1, φ2, . . . where, for convenience, we suppose
each term φm occurs infinitely often. If we let Hm be the set of f ∈ C(T) such that there exists a character N ∈ Z with

∣∣exp(2π iNt) − φm(t)
∣∣ < 1/m

for all t ∈ Zf , then it is easy to see that Hm is open.
To show that Hm is dense, observe that, given ε > 0 and f ∈ C(T), we can find a piecewise linear, nowhere locally

constant g ∈ C(T) with ‖h − g‖∞ < ε/2 and then a piecewise linear, nowhere locally constant h ∈ C(T) with Zh

finite and independent and so, by Kronecker’s theorem, such that there exists a integer N with
∥∥exp(2π iNt) − φn(t)

∥∥ < 1/m

for all t ∈ Zg . Since ‖h − f ‖∞ < ε and h ∈ Hm we are done.
It follows that, quasi-always, f ∈ ⋂∞

m=1 Hm and so Zf is Kronecker.
Since probabilistic methods often produce functions of a certain Lipschitz class, it may be worth remarking that

the same proofs give the following result:

Lemma 2.5. Suppose k : [0,1] → [0,∞) is a continuous strictly increasing function with k(0) = 0 and k(t)/t → ∞
as t → 0+. Let Λ be the space of f ∈ C(T) such that

‖f ‖Λ = ‖f ‖∞ + sup
s �=t

|f (s) − f (t)|
k(|s − t |)

is finite. The space Λ of continuous functions with the norm ‖.‖Λ is complete. Let Aq and A be as in Lemma 1.2.
Quasi-all f ∈ Λ have a zero set which is a perfect Kronecker set and satisfies the following condition. If x1, x2, . . .

are distinct zeros of f , then x /∈ A.
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