

Available online at www.sciencedirect.com

COMPTES RENDUS MATHEMATIQUE

C. R. Acad. Sci. Paris, Ser. I 346 (2008) 779-782

http://france.elsevier.com/direct/CRASS1/

Probability Theory

Error calculus and regularity of Poisson functionals: the lent particle method

Nicolas Bouleau

École des Ponts, Paris-Est, ParisTech, 6 et 8, avenue Blaise-Pascal, cité Descartes, Champs-sur-Marne, Marne-la vallée cedex, France

Received 1 April 2008; accepted 20 May 2008

Available online 20 June 2008

Presented by Paul Malliavin

Abstract

We propose a new method to apply the Lipschitz functional calculus of local Dirichlet forms to Poisson random measures. To cite this article: N. Bouleau, C. R. Acad. Sci. Paris, Ser. I 346 (2008).

© 2008 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Résumé

Calcul d'erreur et régularité des fonctionnelles de Poisson : la méthode de la particule prêtée. Nous proposons une nouvelle méthode pour appliquer le calcul fonctionnel lipschitzien des formes de Dirichlet locales aux mesures aléatoires de Poisson. *Pour citer cet article : N. Bouleau, C. R. Acad. Sci. Paris, Ser. I 346 (2008).*

© 2008 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Notation and basic formulae

Let us consider a local Dirichlet structure with carré du champ $(X, \mathcal{X}, \nu, \mathbf{d}, \gamma)$ where (X, \mathcal{X}, ν) is a σ -finite measured space called *bottom-space*. Singletons are in \mathcal{X} and ν is diffuse, \mathbf{d} is the domain of the Dirichlet form $\epsilon[u] = 1/2 \int \gamma[u] d\nu$. We denote $(a, \mathcal{D}(a))$ the generator in $L^2(\nu)$ (cf. [3]).

A random Poisson measure associated to (X, \mathcal{X}, ν) is denoted N. Ω is the configuration space of countable sums of Dirac masses on X and \mathcal{A} is the σ -field generated by N, of law \mathbb{P} on Ω . The space $(\Omega, \mathcal{A}, \mathbb{P})$ is called *the up-space*. We write N(f) for $\int f \, dN$. If $p \in [1, \infty[$ the set $\{e^{iN(f)}: f \text{ real}, f \in L^1 \cap L^2(\nu)\}$ is total in $L^p_{\mathbb{C}}(\Omega, \mathcal{A}, \mathbb{P})$. We put $\tilde{N} = N - \nu$. The relation $\mathbb{E}(\tilde{N}f)^2 = \int f^2 d\nu$ extends and gives sense to $\tilde{N}(f)$, $f \in L^2(\nu)$. The Laplace functional and the differential calculus with γ yield

$$\forall f \in \mathbf{d}, \ \forall h \in \mathcal{D}(a) \quad \mathbb{E}\left[e^{i\tilde{N}(f)}\left(\tilde{N}\left(a[h]\right) + \frac{i}{2}N\left(\gamma[f,h]\right)\right)\right] = 0.$$
(1)

1631-073X/\$ – see front matter © 2008 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved. doi:10.1016/j.crma.2008.05.020

E-mail address: bouleau@enpc.fr.

2. Product, particle by particle, of a Poisson random measure by a probability measure

Given a probability space (R, \mathcal{R}, ρ) , let us consider a Poisson random measure $N \odot \rho$ on $(X \times R, \mathcal{X} \times \mathcal{R})$ with intensity $\nu \times \rho$ such that for $f \in L^1(\nu)$ and $g \in L^1(\rho)$ if $N(f) = \sum f(x_n)$ then $(N \odot \rho)(fg) = \sum f(x_n)g(r_n)$ where the r_n 's are i.i.d. independent of N with law ρ . Calling $(\hat{\Omega}, \hat{\mathcal{A}}, \hat{\mathbb{P}})$ the product of all the factors (R, \mathcal{R}, ρ) involved in the construction of $N \odot \rho$, we obtain the following properties: For an $\mathcal{A} \times \mathcal{X} \times \mathcal{R}$ -measurable and positive function F, $\hat{\mathbb{E}} \int F(\omega, x, r)N \odot \rho(dx dr) = \int F d\rho dN \mathbb{P}$ -a.s.

Let us denote by \mathbb{P}_N the measure $\mathbb{P}(d\omega)N_{\omega}(dx)$ on $(\Omega \times X, \mathcal{A} \times \mathcal{X})$. We have the following:

Lemma 2.1. Let F be $\mathcal{A} \times \mathcal{X} \times \mathcal{R}$ -measurable, $F \in \mathcal{L}^2(\mathbb{P}_N \times \rho)$ and such that $\int F(\omega, x, r)\rho(dr) = 0 \mathbb{P}_N$ -a.s., then $\int F d(N \odot \rho)$ is well defined, belongs to $L^2(\mathbb{P} \times \hat{\mathbb{P}})$ and

$$\hat{\mathbb{E}}\left(\int F \,\mathrm{d}(N \odot \rho)\right)^2 = \int F^2 \,\mathrm{d}N \,\mathrm{d}\rho \quad \mathbb{P}\text{-}a.s.$$
⁽²⁾

The argument consists in considering F_n satisfying $\mathbb{E} \int F_n^2 dv d\rho < +\infty$ and $\mathbb{E} \int (\int |F_n| dv)^2 d\rho < +\infty$ and using the relation $\hat{\mathbb{E}} (\int F_n d(N \odot \rho))^2 = (\int F_n d\rho dN)^2 - \int (\int F_n d\rho)^2 dN + \int F_n^2 d\rho dN$ P-a.s.

3. Construction by Friedrichs' method and expression of the gradient

(a) We suppose the space by **d** of the bottom structure is separable, then a gradient exists (cf. [3] Chap. V, p. 225 et seq.). We denote it \flat and choose it with values in the space $L^2(R, \mathcal{R}, \rho)$. Thus, for $u \in \mathbf{d}$ we have $u^{\flat} \in L^2(\nu \times \rho)$, $\gamma[u] = \int (u^{\flat})^2 d\rho$ and \flat satisfies the chain rule. We suppose in addition, what is always possible, that \flat takes its values in the subspace orthogonal to the constant 1, i.e.

$$\forall u \in \mathbf{d} \quad \int u^{\flat} \, \mathrm{d}\rho = 0 \quad \nu\text{-a.s.} \tag{3}$$

This hypothesis is important here as in many applications (cf. [2] Chap. V §4.6). We suppose also, but this is not essential (cf. [3] p. 44) $1 \in \mathbf{d}_{\text{loc}} \gamma[1] = 0$ so that $1^{\flat} = 0$.

(b) We define a pre-domain \mathcal{D}_0 dense in $L^2_{\mathbb{C}}(\mathbb{P})$ by

$$\mathcal{D}_0 = \left\{ \sum_{p=1}^m \lambda_p \, \mathrm{e}^{\mathrm{i}\tilde{N}(f_p)}; m \in \mathbb{N}^*, \lambda_p \in \mathbb{C}, \, f_p \in \mathcal{D}(a) \cap L^1(\nu) \right\}.$$

(c) We introduce the creation operator inspired from quantum mechanics (see [7–9,1,5,6] and [10] among others) defined as follows

$$\varepsilon_x^+(\omega)$$
 equals ω if $x \in \text{supp}(\omega)$, and equals $\omega + \varepsilon_x$ if $x \notin \text{supp}(\omega)$ (4)

so that

$$\varepsilon_x^+(\omega) = \omega \quad N_\omega$$
-a.e. $x \quad \text{and} \quad \varepsilon_x^+(\omega) = \omega + \varepsilon_x \quad \nu$ -a.e. x . (5)

This map is measurable and the Laplace functional shows that for an $\mathcal{A} \times \mathcal{X}$ -measurable $H \ge 0$,

$$\mathbb{E}\int\varepsilon^{+}H\,\mathrm{d}\nu=\mathbb{E}\int H\,\mathrm{d}N.$$
(6)

Let us remark also that by (5), for $F \in \mathcal{L}^2(\mathbb{P}_N \times \rho)$

$$\int \varepsilon^+ F \,\mathrm{d}(N \odot \rho) = \int F \,\mathrm{d}(N \odot \rho) \quad \mathbb{P} \times \hat{\mathbb{P}} \text{-a.s.}$$
⁽⁷⁾

(d) We defined a gradient \sharp for the up-structure on \mathcal{D}_0 by putting for $F \in \mathcal{D}_0$

$$F^{\sharp} = \int (\varepsilon^+ F)^{\flat} \,\mathrm{d}(N \odot \rho) \tag{8}$$

781

this definition being justified by the fact that for \mathbb{P} -a.e. ω the map $y \mapsto F(\varepsilon_y^+(\omega)) - F(\omega)$ is in $\mathbf{d}, \varepsilon^+ F$ belongs to $L^{\infty}(\mathbb{P}) \otimes \mathbf{d}$ algebraic tensor product, and $(\varepsilon^+ F - F)^{\flat} = (\varepsilon^+ F)^{\flat} \in L^2(\mathbb{P}_N \times \rho)$.

For $F, G \in \mathcal{D}_0$ of the form

$$F = \sum_{p} \lambda_{p} \operatorname{e}^{\mathrm{i}\tilde{N}(f_{p})} = \Phi\left(\tilde{N}(f_{1}), \dots, \tilde{N}(f_{m})\right), \qquad G = \sum_{q} \mu_{q} \operatorname{e}^{\mathrm{i}\tilde{N}(g_{q})} = \Psi\left(\tilde{N}(g_{1}), \dots, \tilde{N}(g_{n})\right)$$

we compute using (2), (3) and (7) (in the spirit of Prop. 1 of [9] or Lemma 1.2 of [6])

$$\hat{\mathbb{E}}\left[F^{\sharp}\overline{G^{\sharp}}\right] = \sum_{p,q} \lambda_{p} \overline{\mu_{q}} \,\mathrm{e}^{\mathrm{i}\tilde{N}(f_{p}) - \mathrm{i}\tilde{N}(g_{q})} N\left(\gamma[f_{p}, g_{q}]\right) \tag{9}$$

and we have:

Proposition 3.1. If we put $A_0[F] = \sum_p \lambda_p e^{i\tilde{N}(f_p)}(i\tilde{N}(a[f_p]) - \frac{1}{2}N(\gamma[f_p]))$ it comes

$$\mathbb{E}\left[A_0[F]\overline{G}\right] = -\frac{1}{2}\mathbb{E}\sum_{p,q} \Phi'_p \overline{\Psi'_q} N(\gamma[f_p, g_q]).$$
⁽¹⁰⁾

In order to show that $A_0[F]$ does not depend on the form of F, by (10) it is enough to show that the expression $\sum_{p,q} \Phi'_p \overline{\Psi'_q} N(\gamma[f_p, g_q])$ depends only on F and G. But this comes from (9) since F^{\sharp} and G^{\sharp} depend only on F and G.

By this proposition, A_0 is symmetric on \mathcal{D}_0 , negative, and the argument of Friedrichs applies (cf. [3] p. 4), A_0 extends uniquely to a selfadjoint operator $(A, \mathcal{D}(A))$ which defines a closed positive (hermitian) quadratic form $\mathcal{E}[F] = -\mathbb{E}[A[F]\overline{F}]$. By (10) contractions operate and (cf. [3]) \mathcal{E} is a Dirichlet form which is local with carré du champ denoted Γ and the up-structure obtained $(\Omega, \mathcal{A}, \mathbb{P}, \mathbb{D}, \Gamma)$ satisfies

$$\forall f \in \mathbf{d}, \quad \tilde{N}(f) \in \mathbb{D} \quad \text{and} \quad \Gamma\left[\tilde{N}(f)\right] = N\left(\gamma[f]\right). \tag{11}$$

The operator \sharp extends to a gradient for Γ as a closed operator from $L^2(\mathbb{P})$ into $L^2(\mathbb{P} \times \hat{\mathbb{P}})$ with domain \mathbb{D} which satisfies the chain rule and may be computed on functionals $\Phi(\tilde{N}(f_1), \ldots, \tilde{N}(f_m)), \Phi$ Lipschitz and C^1 and their limits in \mathbb{D} (as done in [4]).

Formula (8) for \sharp can be extended from \mathcal{D}_0 to \mathbb{D} . Let us introduce the space $\underline{\mathbb{D}}$ closure of $\mathcal{D}_0 \otimes \mathbf{d}$ for the norm

$$\|H\|_{\underline{\mathbb{D}}} = \left(\mathbb{E}\int \gamma \left[H(\omega, \cdot)\right](x)N(\mathrm{d}x)\right)^{1/2} + \mathbb{E}\int \left|H(\omega, x)\right|\xi(x)N(\mathrm{d}x)$$

where $\xi > 0$ is a fixed function such that $N(\xi) \in L^2(\mathbb{P})$.

Theorem 3.2. The formula $F^{\sharp} = \int (\varepsilon^+ F)^{\flat} d(N \odot \rho)$ decomposes as follows

$$F \in \mathbb{D} \xrightarrow{\varepsilon^+} \varepsilon^+ F \in \underline{\mathbb{D}} \xrightarrow{\flat} (\varepsilon^+ F)^\flat \in L^2_0(\mathbb{P}_N \times \rho) \xrightarrow{\mathrm{d}(N \odot \rho)} F^\sharp \in L^2(\mathbb{P} \times \hat{\mathbb{P}})$$

where each operator is continuous on the range of the preceding one, $L_0^2(\mathbb{P}_N \times \rho)$ denoting the closed subspace of $L^2(\mathbb{P}_N \times \rho)$ of ρ -centered elements, and we have

$$\Gamma[F] = \hat{\mathbb{E}}|F^{\sharp}|^{2} = \int \gamma[\varepsilon^{+}F] \,\mathrm{d}N.$$
⁽¹²⁾

4. The lent particle method

Let us consider, for instance, a real process Y_t with independent increments and Lévy measure σ integrating x^2 , Y_t being supposed centered without Gaussian part. We assume that σ has an l.s.c. density so that a local Dirichlet structure may be constructed on $\mathbb{R}\setminus\{0\}$ with carré du champ $\gamma[f] = x^2 f'^2(x)$. If N is the random Poisson measure with intensity $dt \times \sigma$ we have $\int_0^t h(s) dY_s = \int \mathbb{1}_{[0,t]}(s)h(s)x\tilde{N}(ds dx)$ and the choice done for γ gives $\Gamma[\int_0^t h(s) dY_s] = \int_0^t h^2(s) d[Y, Y]_s$ for $h \in L^2_{loc}(dt)$. In order to study the regularity of the random variable $V = \int_0^t \varphi(Y_{s-}) dY_s$ where φ is Lipschitz and C^1 , we have two ways:

(a) We may represent the gradient \sharp as $Y_t^{\sharp} = B_{[Y,Y]_t}$ where *B* is a standard auxiliary independent Brownian motion. Then by the chain rule $V^{\sharp} = \int_0^t \varphi'(Y_{s-})(Y_{s-})^{\sharp} dY_s + \int_0^t \varphi(Y_{s-}) dB_{[Y]_s}$ now, using $(Y_{s-})^{\sharp} = (Y_s^{\sharp})_{-}$, a classical but rather tedious stochastic computation yields

$$\Gamma[V] = \hat{\mathbb{E}}\left[V^{\sharp 2}\right] = \sum_{\alpha \leqslant t} \Delta Y_{\alpha}^{2} \left(\int_{|\alpha|}^{t} \varphi'(Y_{s-}) \, \mathrm{d}Y_{s} + \varphi(Y_{\alpha-})\right)^{2}.$$
(13)

Since V has real values the *energy image density property* holds, and V has a density as soon as $\Gamma[V]$ is strictly positive a.s. what may be discussed using the relation (13).

(b) Another more direct way consists in applying the theorem. For this we define b by choosing η such that $\int_0^1 \eta(r) dr = 0 \text{ and } \int_0^1 \eta^2(r) dr = 1 \text{ and putting } f^{\flat} = xf'(x)\eta(r).$ 1°. First step. We add a particle (α, x) i.e. a jump to Y at time α with size x what gives $\varepsilon^+ V - V = \varphi(Y_{\alpha-})x + \varepsilon^+ V$

 $\int_{l_{\alpha}}^{t} (\varphi(Y_{s-}+x) - \varphi(Y_{s-})) \, \mathrm{d}Y_{s}$

2°. $V^{\flat} = 0$ since V does not depend on x, and $(\varepsilon^+ V)^{\flat} = (\varphi(Y_{\alpha-})x + \int_{\alpha}^t \varphi'(Y_{s-} + x)x \, dY_s)\eta(r)$ because $x^{\flat} = x \eta(r).$

3°. We compute $\gamma[\varepsilon^+ V] = \int (\varepsilon^+ V)^{\flat 2} dr = (\varphi(Y_{\alpha-})x + \int_{]\alpha}^t \varphi'(Y_{s-} + x)x dY_s)^2$. 4°. We take back the particle we gave, because in order to compute $\int \gamma[\varepsilon^+ V] dN$ the integral in N confuses $\varepsilon^+ \omega$ and ω . That gives $\int \gamma[\varepsilon^+ V] dN = \int (\varphi(Y_{\alpha-}) + \int_{|\alpha}^t \varphi'(Y_{s-}) dY_s)^2 x^2 N(d\alpha dx)$ and (13). We remark that both operators $F \mapsto \varepsilon^+ F$, $F \mapsto (\varepsilon^+ F)^{\flat}$ are non-local, but instead $F \mapsto \int (\varepsilon^+ F)^{\flat} d(N \odot \rho)$ and

 $F \mapsto \int \gamma[\varepsilon^+ F] dN$ are local: taking back the lent particle gives the locality.

References

- [1] S. Albeverio, Yu.G. Kondratiev, M. Röckner, Analysis and geometry on configuration spaces, J. Funct. Anal. 154 (2) (1998) 444-500.
- [2] N. Bouleau, Error Calculus for Finance and Physics: The Language of Dirichlet Forms, De Gruyter, 2003.
- [3] N. Bouleau, F. Hirsch, Dirichlet Forms and Analysis on Wiener Space, De Gruyter, 1991.
- [4] L. Denis, A criterion of density for solutions of Poisson-driven SDEs, Probab. Theory Relat. Fields 118 (2000) 406-426.
- [5] Y. Ishikawa, H. Kunita, Malliavin calculus on the Wiener-Poisson space and its application to canonical SDE with jumps, Stochastic Process. Appl. 116 (2006) 1743-1769.
- [6] Z.-M. Ma, M. Röckner, Construction of diffusions on configuration spaces, Osaka J. Math. 37 (2000) 273–314.
- [7] D. Nualart, J. Vives, Anticipative calculus for the Poisson process based on the Fock space, in: Sém. Probabilités XXIV, in: Lecture Notes in Math., vol. 1426, Springer, 1990, pp. 154-165.
- [8] J. Picard, On the existence of smooth densities for jump processes, Probab. Theory Relat. Fields 105 (1996) 481-511.
- [9] N. Privault, A pointwise equivalence of gradients on configuration spaces, C. R. Acad. Sci. Paris 327 (1998) 677-682.
- [10] J.-L. Solé, F. Utzet, J. Vives, Canonical Lévy processes and Malliavin calculus, Stochastic Process. Appl. 117 (2007) 165–187.