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Abstract

We propose a new method to apply the Lipschitz functional calculus of local Dirichlet forms to Poisson random measures. To
cite this article: N. Bouleau, C. R. Acad. Sci. Paris, Ser. I 346 (2008).
© 2008 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Résumé

Calcul d’erreur et régularité des fonctionnelles de Poisson : 1a méthode de la particule prétée. Nous proposons une nouvelle
méthode pour appliquer le calcul fonctionnel lipschitzien des formes de Dirichlet locales aux mesures aléatoires de Poisson. Pour
citer cet article : N. Bouleau, C. R. Acad. Sci. Paris, Ser. I 346 (2008).
© 2008 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Notation and basic formulae

Let us consider a local Dirichlet structure with carré du champ (X, X, v,d, y) where (X, X,v) is a o-finite
measured space called bottom-space. Singletons are in X' and v is diffuse, d is the domain of the Dirichlet form
elu]l = 1/2f y[u]dv. We denote (a, D(a)) the generator in L%®) (cf. [3]).

A random Poisson measure associated to (X, X, v) is denoted N. §2 is the configuration space of countable sums
of Dirac masses on X and A is the o -field generated by N, of law P on £2. The space (§2, A, P) is called the up-space.
We write N(f) for fde If p €1, 00[ the set {eN): freal, f € L' N L2(v)} is total in Lp(.Q A, P). We put
N = N — v. The relation E(N f)?= f f2dv extends and gives sense to N( f), f € L*(v). The Laplace functional
and the differential calculus with y yield

Vfed, YheD() ]E[ IN(f)( (alhl) + N( fh]))} M
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2. Product, particle by particle, of a Poisson random measure by a probability measure

Given a probability space (R, R, p), let us consider a Poisson random measure N ® p on (X x R, X x R) with
intensity v x p such that for f € L'(v) and ge Ll(p) iEN(f) =) f(x,) then (N O p)(fg) =D f(xn)g(ry) where
the r;,’s are i.i.d. independent of N with law p. Calling ([}, fl, I@’) the product of all the factors (R, R, p) involved in
the construction of N © p, we obtain the following properties: For an A x X’ x R-measurable and positive function F,
I@f F(w,x,r)N © p(dxdr) = [ FdpdN P-as.

Let us denote by Py the measure P(dw) N, (dx) on (£2 x X, A x X'). We have the following:

Lemma 2.1. Let F be A x X x R-measurable, F € L2(Py x p) and such that f F(w,x,r)p(dr)=0Py-a.s., then
[ FA(N © p) is well defined, belongs to L*(P x P) and

2
E(/Fd(N@p)) =/F2de,0 P-a.s. )

The argument consists in considering F,, satisfying E [ Fn2 dvdp < +ooand E [ ([ |F,| dv)?dp < 400 and using
the relation E( [ F, d(N © p))? = ([ F,dpdN)? — [([ F,dp)2dN + [ F2dpdN P-as.

3. Construction by Friedrichs’ method and expression of the gradient

(a) We suppose the space by d of the bottom structure is separable, then a gradient exists (cf. [3] Chap. V, p. 225
et seq.). We denote it b and choose it with values in the space L*(R, R, p). Thus, for u € d we have u” € L2(v x p),
ylul= [ (u*)?dp and b satisfies the chain rule. We suppose in addition, what is always possible, that b takes its values
in the subspace orthogonal to the constant 1, i.e.

Vued /ubdp =0 v-as. 3)

This hypothesis is important here as in many applications (cf. [2] Chap. V §4.6). We suppose also, but this is not
essential (cf. [3] p. 44) 1 e djoc y[1] =0 so that 1> =0.
(b) We define a pre-domain Dy dense in Lé(]P)) by

m

Dy = { > a,peVUimeN*, 1, €C, f, e D@ N Ll(v)}.
p=1

(c) We introduce the creation operator inspired from quantum mechanics (see [7-9,1,5,6] and [10] among others)
defined as follows

sj (w) equals w if x € supp(w), and equals w + &y if x ¢ supp(w) @
so that
ef(w)=w Nyaex and &f(w)=w+e v-ae x. (5)

This map is measurable and the Laplace functional shows that for an A x X'-measurable H > 0,
E/5+Hdv=]E/HdN. (6)
Let us remark also that by (5), for F € L2(Py x 0)

fs+Fd(N®,0)=/Fd(N®,O) P x P-ass. (7

(d) We defined a gradient g for the up-structure on Dy by putting for F € Dy

Ff = f (eTF)d(N O p) ®)
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this definition being justified by the fact that for P-a.e. w the map y — F (8;r(w)) — F(w) is in d, e F belongs to
L>®(P) ® d algebraic tensor product, and (¢ T F — F)’ = (¢ F)" € L>(Py x p).
For F, G € Dy of the form

F=Y 2, =0o(N(f),....N(fw),  G=) pugeV& =w(N(g, ..., N(g)
p q
we compute using (2), (3) and (7) (in the spirit of Prop. 1 of [9] or Lemma 1.2 of [6])
E[FGF) = A, NUDTINGD N (v £, g4]) ©)
P4q
and we have:

Proposition 3.1. If we put Ao[F1=3_, %, VD (N @l f,]) — IN(yLfp)) it comes

E[Ao[FIG ———EZ@ WIN (v fp- 84))- (10)

In order to show that Ag[F'] does not depend on the form of F, by (10) it is enough to show that the expression

Zp q @;,WqN(y[fl,, gq4]) depends only on F and G. But this comes from (9) since F* and G* depend only on F

and G.

By this proposition, Ag is symmetric on Dy, negative, and the argument of Friedrichs applies (cf. [3] p. 4),
Ao extends uniquely to a selfadjoint operator (A, D(A)) which defines a closed positive (hermitian) quadratic form
E[F] = —E[A[F]F]. By (10) contractions operate and (cf. [3]) £ is a Dirichlet form which is local with carré du
champ denoted I" and the up-structure obtained (£2, A, P, D, I'") satisfies

Vfed, N(f)eD and I'[N(f)]=N(yLf]). (11)

The operator # extends to a gradient for I as a closed operator from L%(P) into L2(P x I@’) with domain D which
satisfies the chain rule and may be computed on functionals <D(1(7 f1), .-, N (fm)), @ Lipschitz and C I and their
limits in ID (as done in [4]).

Formula (8) for ff can be extended from Dy to ID. Let us introduce the space D closure of Dy ® d for the norm

1/2
IHp = <EfV[H(w,~)](X)N(dX)> +E/|H(w,X)|$(X)N(dX)
where £ > 0 is a fixed function such that N (&) € L%(P).
Theorem 3.2. The formula F* = [(¢*F)"d(N © p) decomposes as follows

FeDrs etFeDis (67 F) e LBy x p) ") Ff c L2 x )

where each operator is continuous on the range of the preceding one, L(z)(IP’N X p) denoting the closed subspace of
L2(Py x p) of p-centered elements, and we have

F[F]=I@|Fﬁ|2=/y[e+F]dN. (12)

4. The lent particle method

Let us consider, for instance, a real process ¥; with independent increments and Lévy measure o integrating x2, Y;
being supposed centered without Gaussian part. We assume that o has an l.s.c. density so that a local Dirichlet structure
may be constructed on R\{0} with carré du champ y[f] = x?f'2(x). If N is the random Poisson measure with
intensity df x o we have fé h(s)dYs = [ 1j0.1(s)k(s)x N (ds dx) and the choice done for y gives F[fé h(s)dYs] =
fot h2(s)d[Y, Y] forh € leoc(dt). In order to study the regularity of the random variable V = fot ¢(Ys—)dY; where ¢
is Lipschitz and C', we have two ways:
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(a) We may represent the gradient ff as Y,Ii = B[y y], where B is a standard auxiliary independent Brownian motion.
Then by the chain rule V* = fot @' (Ye_)(Ys_)PdYy + fé(p(Yx_)dB[Y]S now, using (Ys_)? = (Y%)_, a classical but
rather tedious stochastic computation yields

t 2
rvi=g[ve]=> " ar; f(p’(Ys,)dYs +o(Ye) ) . (13)

a<t lo

Since V has real values the energy image density property holds, and V has a density as soon as I'[V] is strictly
positive a.s. what may be discussed using the relation (13).

(b) Another more direct way consists in applying the theorem. For this we define b by choosing 1 such that
fol n(r)dr =0 and fol n?(r)dr =1 and putting f° = xf’(x)n(r).

1°. First step. We add a particle (o, x) i.e. a jump to Y at time « with size x what gives eV — V = p(Y,_)x +
S @Y +x) — 9(¥5)) dY;

2°. V* =0 since V does not depend on x, and (¢TV)" = (¢(Yo_)x + f]ix ¢’ (Ys— + x)xdYs)n(r) because
x> =xn(r).

3°. We compute y[eTV]= [(e7V)?dr = (¢p(Yo—)x + [i, @' (Ys— +x)x dY,)%.

4°. We take back the particle we gave, because in order to compute f y[eTV]dN the integral in N confuses e ™o
and w. That gives [ y[e*V]dN = [(p(Yy-) + f]; @' (Ys_)dY;)®x2N (da dx) and (13).

We remark that both operators F + ¢t F, F > (¢7F)" are non-local, but instead F > [(¢¥F)”d(N ® p) and
F > [y[eTF]dN are local: taking back the lent particle gives the locality.
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