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Abstract

We propose a new method to apply the Lipschitz functional calculus of local Dirichlet forms to Poisson random measures. To
cite this article: N. Bouleau, C. R. Acad. Sci. Paris, Ser. I 346 (2008).
© 2008 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Résumé

Calcul d’erreur et régularité des fonctionnelles de Poisson : la méthode de la particule prêtée. Nous proposons une nouvelle
méthode pour appliquer le calcul fonctionnel lipschitzien des formes de Dirichlet locales aux mesures aléatoires de Poisson. Pour
citer cet article : N. Bouleau, C. R. Acad. Sci. Paris, Ser. I 346 (2008).
© 2008 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Notation and basic formulae

Let us consider a local Dirichlet structure with carré du champ (X,X , ν,d, γ ) where (X,X , ν) is a σ -finite
measured space called bottom-space. Singletons are in X and ν is diffuse, d is the domain of the Dirichlet form
ε[u] = 1/2

∫
γ [u]dν. We denote (a,D(a)) the generator in L2(ν) (cf. [3]).

A random Poisson measure associated to (X,X , ν) is denoted N . Ω is the configuration space of countable sums
of Dirac masses on X and A is the σ -field generated by N , of law P on Ω . The space (Ω,A,P) is called the up-space.
We write N(f ) for

∫
f dN . If p ∈ [1,∞[ the set {eiN(f ): f real, f ∈ L1 ∩ L2(ν)} is total in L

p

C
(Ω,A,P). We put

Ñ = N − ν. The relation E(Ñf )2 = ∫
f 2 dν extends and gives sense to Ñ(f ), f ∈ L2(ν). The Laplace functional

and the differential calculus with γ yield

∀f ∈ d, ∀h ∈D(a) E

[
eiÑ(f )

(
Ñ

(
a[h]) + i

2
N

(
γ [f,h]))]

= 0. (1)
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2. Product, particle by particle, of a Poisson random measure by a probability measure

Given a probability space (R,R, ρ), let us consider a Poisson random measure N � ρ on (X × R,X × R) with
intensity ν ×ρ such that for f ∈ L1(ν) and g ∈ L1(ρ) if N(f ) = ∑

f (xn) then (N �ρ)(fg) = ∑
f (xn)g(rn) where

the rn’s are i.i.d. independent of N with law ρ. Calling (Ω̂, Â, P̂) the product of all the factors (R,R, ρ) involved in
the construction of N �ρ, we obtain the following properties: For an A×X ×R-measurable and positive function F ,
Ê

∫
F(ω,x, r)N � ρ(dx dr) = ∫

F dρ dN P-a.s.
Let us denote by PN the measure P(dω)Nω(dx) on (Ω × X,A×X ). We have the following:

Lemma 2.1. Let F be A×X ×R-measurable, F ∈ L2(PN × ρ) and such that
∫

F(ω,x, r)ρ(dr) = 0 PN -a.s., then∫
F d(N � ρ) is well defined, belongs to L2(P × P̂) and

Ê

(∫
F d(N � ρ)

)2

=
∫

F 2 dN dρ P-a.s. (2)

The argument consists in considering Fn satisfying E
∫

F 2
n dν dρ < +∞ and E

∫
(
∫ |Fn|dν)2 dρ < +∞ and using

the relation Ê(
∫

Fn d(N � ρ))2 = (
∫

Fn dρdN)2 − ∫
(
∫

Fn dρ)2 dN + ∫
F 2

n dρ dN P-a.s.

3. Construction by Friedrichs’ method and expression of the gradient

(a) We suppose the space by d of the bottom structure is separable, then a gradient exists (cf. [3] Chap. V, p. 225
et seq.). We denote it 	 and choose it with values in the space L2(R,R, ρ). Thus, for u ∈ d we have u	 ∈ L2(ν × ρ),
γ [u] = ∫

(u	)2 dρ and 	 satisfies the chain rule. We suppose in addition, what is always possible, that 	 takes its values
in the subspace orthogonal to the constant 1, i.e.

∀u ∈ d
∫

u	 dρ = 0 ν-a.s. (3)

This hypothesis is important here as in many applications (cf. [2] Chap. V §4.6). We suppose also, but this is not
essential (cf. [3] p. 44) 1 ∈ dloc γ [1] = 0 so that 1	 = 0.

(b) We define a pre-domain D0 dense in L2
C
(P) by

D0 =
{

m∑
p=1

λp eiÑ(fp);m ∈ N
∗, λp ∈ C, fp ∈D(a) ∩ L1(ν)

}
.

(c) We introduce the creation operator inspired from quantum mechanics (see [7–9,1,5,6] and [10] among others)
defined as follows

ε+
x (ω) equals ω if x ∈ supp(ω), and equals ω + εx if x /∈ supp(ω) (4)

so that

ε+
x (ω) = ω Nω-a.e. x and ε+

x (ω) = ω + εx ν-a.e. x. (5)

This map is measurable and the Laplace functional shows that for an A×X -measurable H � 0,

E

∫
ε+H dν = E

∫
H dN. (6)

Let us remark also that by (5), for F ∈ L2(PN × ρ)∫
ε+F d(N � ρ) =

∫
F d(N � ρ) P × P̂-a.s. (7)

(d) We defined a gradient � for the up-structure on D0 by putting for F ∈D0

F� =
∫

(ε+F)	 d(N � ρ) (8)
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this definition being justified by the fact that for P-a.e. ω the map y �→ F(ε+
y (ω)) − F(ω) is in d, ε+F belongs to

L∞(P) ⊗ d algebraic tensor product, and (ε+F − F)	 = (ε+F)	 ∈ L2(PN × ρ).
For F,G ∈D0 of the form

F =
∑
p

λp eiÑ(fp) = Φ
(
Ñ(f1), . . . , Ñ(fm)

)
, G =

∑
q

μq eiÑ(gq ) = Ψ
(
Ñ(g1), . . . , Ñ(gn)

)
we compute using (2), (3) and (7) (in the spirit of Prop. 1 of [9] or Lemma 1.2 of [6])

Ê
[
F�G�

] =
∑
p,q

λpμq eiÑ(fp)−iÑ(gq )N
(
γ [fp,gq ]) (9)

and we have:

Proposition 3.1. If we put A0[F ] = ∑
p λp eiÑ(fp)(iÑ(a[fp]) − 1

2N(γ [fp])) it comes

E
[
A0[F ]G] = −1

2
E

∑
p,q

Φ ′
pΨ ′

qN
(
γ [fp,gq ]). (10)

In order to show that A0[F ] does not depend on the form of F , by (10) it is enough to show that the expression∑
p,q Φ ′

pΨ ′
qN(γ [fp,gq ]) depends only on F and G. But this comes from (9) since F� and G� depend only on F

and G.
By this proposition, A0 is symmetric on D0, negative, and the argument of Friedrichs applies (cf. [3] p. 4),

A0 extends uniquely to a selfadjoint operator (A,D(A)) which defines a closed positive (hermitian) quadratic form
E[F ] = −E[A[F ]F ]. By (10) contractions operate and (cf. [3]) E is a Dirichlet form which is local with carré du
champ denoted Γ and the up-structure obtained (Ω,A,P,D,Γ ) satisfies

∀f ∈ d, Ñ(f ) ∈ D and Γ
[
Ñ(f )

] = N
(
γ [f ]). (11)

The operator � extends to a gradient for Γ as a closed operator from L2(P) into L2(P × P̂) with domain D which
satisfies the chain rule and may be computed on functionals Φ(Ñ(f1), . . . , Ñ(fm)), Φ Lipschitz and C1 and their
limits in D (as done in [4]).

Formula (8) for � can be extended from D0 to D. Let us introduce the space D closure of D0 ⊗ d for the norm

‖H‖D =
(

E

∫
γ
[
H(ω, ·)](x)N(dx)

)1/2

+ E

∫ ∣∣H(ω,x)
∣∣ξ(x)N(dx)

where ξ > 0 is a fixed function such that N(ξ) ∈ L2(P).

Theorem 3.2. The formula F� = ∫
(ε+F)	 d(N � ρ) decomposes as follows

F ∈ D
ε+�−→ ε+F ∈ D

	�−→ (ε+F)	 ∈ L2
0(PN × ρ)

d(N�ρ)�−→ F� ∈ L2(P × P̂)

where each operator is continuous on the range of the preceding one, L2
0(PN × ρ) denoting the closed subspace of

L2(PN × ρ) of ρ-centered elements, and we have

Γ [F ] = Ê|F�|2 =
∫

γ [ε+F ]dN. (12)

4. The lent particle method

Let us consider, for instance, a real process Yt with independent increments and Lévy measure σ integrating x2, Yt

being supposed centered without Gaussian part. We assume that σ has an l.s.c. density so that a local Dirichlet structure
may be constructed on R\{0} with carré du champ γ [f ] = x2f ′2(x). If N is the random Poisson measure with
intensity dt × σ we have

∫ t

0 h(s)dYs = ∫
1[0,t](s)h(s)xÑ(ds dx) and the choice done for γ gives Γ [∫ t

0 h(s)dYs] =∫ t

0 h2(s)d[Y,Y ]s for h ∈ L2
loc(dt). In order to study the regularity of the random variable V = ∫ t

0 ϕ(Ys−)dYs where ϕ

is Lipschitz and C1, we have two ways:
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(a) We may represent the gradient � as Y
�
t = B[Y,Y ]t where B is a standard auxiliary independent Brownian motion.

Then by the chain rule V � = ∫ t

0 ϕ′(Ys−)(Ys−)� dYs + ∫ t

0 ϕ(Ys−)dB[Y ]s now, using (Ys−)� = (Y
�
s )−, a classical but

rather tedious stochastic computation yields

Γ [V ] = Ê
[
V �2] =

∑
α�t

�Y 2
α

( t∫
]α

ϕ′(Ys−)dYs + ϕ(Yα−)

)2

. (13)

Since V has real values the energy image density property holds, and V has a density as soon as Γ [V ] is strictly
positive a.s. what may be discussed using the relation (13).

(b) Another more direct way consists in applying the theorem. For this we define 	 by choosing η such that∫ 1
0 η(r)dr = 0 and

∫ 1
0 η2(r)dr = 1 and putting f 	 = xf ′(x)η(r).

1◦. First step. We add a particle (α, x) i.e. a jump to Y at time α with size x what gives ε+V − V = ϕ(Yα−)x +∫ t

]α(ϕ(Ys− + x) − ϕ(Ys−))dYs

2◦. V 	 = 0 since V does not depend on x, and (ε+V )	 = (ϕ(Yα−)x + ∫ t

]α ϕ′(Ys− + x)x dYs)η(r) because

x	 = xη(r).
3◦. We compute γ [ε+V ] = ∫

(ε+V )	2 dr = (ϕ(Yα−)x + ∫ t

]α ϕ′(Ys− + x)x dYs)
2.

4◦. We take back the particle we gave, because in order to compute
∫

γ [ε+V ]dN the integral in N confuses ε+ω

and ω. That gives
∫

γ [ε+V ]dN = ∫
(ϕ(Yα−) + ∫ t

]α ϕ′(Ys−)dYs)
2x2N(dα dx) and (13).

We remark that both operators F �→ ε+F , F �→ (ε+F)	 are non-local, but instead F �→ ∫
(ε+F)	 d(N � ρ) and

F �→ ∫
γ [ε+F ]dN are local: taking back the lent particle gives the locality.
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