Error calculus and regularity of Poisson functionals: the lent particle method

Nicolas Bouleau
École des Ponts, Paris-Est, ParisTech, 6 et 8, avenue Blaise-Pascal, cité Descartes, Champs-sur-Marne, Marne-la vallée cedex, France
Received 1 April 2008; accepted 20 May 2008
Available online 20 June 2008
Presented by Paul Malliavin

Abstract

We propose a new method to apply the Lipschitz functional calculus of local Dirichlet forms to Poisson random measures. To cite this article: N. Bouleau, C. R. Acad. Sci. Paris, Ser. I 346 (2008). © 2008 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Résumé

Calcul d'erreur et régularité des fonctionnelles de Poisson : la méthode de la particule prêtée. Nous proposons une nouvelle méthode pour appliquer le calcul fonctionnel lipschitzien des formes de Dirichlet locales aux mesures aléatoires de Poisson. Pour citer cet article : N. Bouleau, C. R. Acad. Sci. Paris, Ser. I 346 (2008).
© 2008 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Notation and basic formulae

Let us consider a local Dirichlet structure with carré du champ ($X, \mathcal{X}, \nu, \mathbf{d}, \gamma$) where (X, \mathcal{X}, ν) is a σ-finite measured space called bottom-space. Singletons are in \mathcal{X} and v is diffuse, \mathbf{d} is the domain of the Dirichlet form $\epsilon[u]=1 / 2 \int \gamma[u] \mathrm{d} \nu$. We denote $(a, \mathcal{D}(a))$ the generator in $L^{2}(\nu)$ (cf. [3]).

A random Poisson measure associated to (X, \mathcal{X}, ν) is denoted $N . \Omega$ is the configuration space of countable sums of Dirac masses on X and \mathcal{A} is the σ-field generated by N, of law \mathbb{P} on Ω. The space $(\Omega, \mathcal{A}, \mathbb{P})$ is called the up-space. We write $N(f)$ for $\int f \mathrm{~d} N$. If $p \in\left[1, \infty\left[\right.\right.$ the set $\left\{\mathrm{e}^{\mathrm{i} N(f)}: f\right.$ real, $\left.f \in L^{1} \cap L^{2}(\nu)\right\}$ is total in $L_{\mathbb{C}}^{p}(\Omega, \mathcal{A}, \mathbb{P})$. We put $\tilde{N}=N-v$. The relation $\mathbb{E}(\tilde{N} f)^{2}=\int f^{2} \mathrm{~d} \nu$ extends and gives sense to $\tilde{N}(f), f \in L^{2}(\nu)$. The Laplace functional and the differential calculus with γ yield

$$
\begin{equation*}
\forall f \in \mathbf{d}, \forall h \in \mathcal{D}(a) \quad \mathbb{E}\left[\mathrm{e}^{\mathrm{i} \tilde{N}(f)}\left(\tilde{N}(a[h])+\frac{\mathrm{i}}{2} N(\gamma[f, h])\right)\right]=0 . \tag{1}
\end{equation*}
$$

[^0]
2. Product, particle by particle, of a Poisson random measure by a probability measure

Given a probability space (R, \mathcal{R}, ρ), let us consider a Poisson random measure $N \odot \rho$ on $(X \times R, \mathcal{X} \times \mathcal{R})$ with intensity $v \times \rho$ such that for $f \in L^{1}(\nu)$ and $g \in L^{1}(\rho)$ if $N(f)=\sum f\left(x_{n}\right)$ then $(N \odot \rho)(f g)=\sum f\left(x_{n}\right) g\left(r_{n}\right)$ where the r_{n} 's are i.i.d. independent of N with law ρ. Calling $(\hat{\Omega}, \hat{\mathcal{A}}, \widehat{\mathbb{P}})$ the product of all the factors (R, \mathcal{R}, ρ) involved in the construction of $N \odot \rho$, we obtain the following properties: For an $\mathcal{A} \times \mathcal{X} \times \mathcal{R}$-measurable and positive function F, $\hat{\mathbb{E}} \int F(\omega, x, r) N \odot \rho(\mathrm{~d} x \mathrm{~d} r)=\int F \mathrm{~d} \rho \mathrm{~d} N \mathbb{P}$-a.s.

Let us denote by \mathbb{P}_{N} the measure $\mathbb{P}(\mathrm{d} \omega) N_{\omega}(\mathrm{d} x)$ on $(\Omega \times X, \mathcal{A} \times \mathcal{X})$. We have the following:
Lemma 2.1. Let F be $\mathcal{A} \times \mathcal{X} \times \mathcal{R}$-measurable, $F \in \mathcal{L}^{2}\left(\mathbb{P}_{N} \times \rho\right)$ and such that $\int F(\omega, x, r) \rho(\mathrm{d} r)=0 \mathbb{P}_{N}$-a.s., then $\int F \mathrm{~d}(N \odot \rho)$ is well defined, belongs to $L^{2}(\mathbb{P} \times \hat{\mathbb{P}})$ and

$$
\begin{equation*}
\hat{\mathbb{E}}\left(\int F \mathrm{~d}(N \odot \rho)\right)^{2}=\int F^{2} \mathrm{~d} N \mathrm{~d} \rho \quad \mathbb{P} \text {-a.s. } \tag{2}
\end{equation*}
$$

The argument consists in considering F_{n} satisfying $\mathbb{E} \int F_{n}^{2} \mathrm{~d} \nu \mathrm{~d} \rho<+\infty$ and $\mathbb{E} \int\left(\int\left|F_{n}\right| \mathrm{d} \nu\right)^{2} \mathrm{~d} \rho<+\infty$ and using the relation $\hat{\mathbb{E}}\left(\int F_{n} \mathrm{~d}(N \odot \rho)\right)^{2}=\left(\int F_{n} \mathrm{~d} \rho d N\right)^{2}-\int\left(\int F_{n} \mathrm{~d} \rho\right)^{2} \mathrm{~d} N+\int F_{n}^{2} \mathrm{~d} \rho \mathrm{~d} N \mathbb{P}$-a.s.

3. Construction by Friedrichs' method and expression of the gradient

(a) We suppose the space by \mathbf{d} of the bottom structure is separable, then a gradient exists (cf. [3] Chap. V, p. 225 et seq.). We denote it b and choose it with values in the space $L^{2}(R, \mathcal{R}, \rho)$. Thus, for $u \in \mathbf{d}$ we have $u^{\mathrm{b}} \in L^{2}(\nu \times \rho)$, $\gamma[u]=\int\left(u^{b}\right)^{2} \mathrm{~d} \rho$ and b satisfies the chain rule. We suppose in addition, what is always possible, that b takes its values in the subspace orthogonal to the constant 1, i.e.

$$
\begin{equation*}
\forall u \in \mathbf{d} \quad \int u^{b} \mathrm{~d} \rho=0 \quad v \text {-a.s. } \tag{3}
\end{equation*}
$$

This hypothesis is important here as in many applications (cf. [2] Chap. V §4.6). We suppose also, but this is not essential (cf. [3] p. 44) $1 \in \mathbf{d}_{\text {loc }} \gamma[1]=0$ so that $1^{\text {b }}=0$.
(b) We define a pre-domain \mathcal{D}_{0} dense in $L_{\mathbb{C}}^{2}(\mathbb{P})$ by

$$
\mathcal{D}_{0}=\left\{\sum_{p=1}^{m} \lambda_{p} \mathrm{e}^{\mathrm{i} \tilde{\mathcal{N}}\left(f_{p}\right)} ; m \in \mathbb{N}^{*}, \lambda_{p} \in \mathbb{C}, f_{p} \in \mathcal{D}(a) \cap L^{1}(\nu)\right\} .
$$

(c) We introduce the creation operator inspired from quantum mechanics (see [7-9,1,5,6] and [10] among others) defined as follows

$$
\begin{equation*}
\varepsilon_{x}^{+}(\omega) \text { equals } \omega \text { if } x \in \operatorname{supp}(\omega), \quad \text { and } \quad \text { equals } \omega+\varepsilon_{x} \text { if } x \notin \operatorname{supp}(\omega) \tag{4}
\end{equation*}
$$

so that

$$
\begin{equation*}
\varepsilon_{x}^{+}(\omega)=\omega \quad N_{\omega} \text {-a.e. } x \quad \text { and } \quad \varepsilon_{x}^{+}(\omega)=\omega+\varepsilon_{x} \quad v \text {-a.e. } x . \tag{5}
\end{equation*}
$$

This map is measurable and the Laplace functional shows that for an $\mathcal{A} \times \mathcal{X}$-measurable $H \geqslant 0$,

$$
\begin{equation*}
\mathbb{E} \int \varepsilon^{+} H \mathrm{~d} \nu=\mathbb{E} \int H \mathrm{~d} N . \tag{6}
\end{equation*}
$$

Let us remark also that by (5), for $F \in \mathcal{L}^{2}\left(\mathbb{P}_{N} \times \rho\right)$

$$
\begin{equation*}
\int \varepsilon^{+} F \mathrm{~d}(N \odot \rho)=\int F \mathrm{~d}(N \odot \rho) \quad \mathbb{P} \times \hat{\mathbb{P}} \text {-a.s. } \tag{7}
\end{equation*}
$$

(d) We defined a gradient \sharp for the up-structure on \mathcal{D}_{0} by putting for $F \in \mathcal{D}_{0}$

$$
\begin{equation*}
F^{\sharp}=\int\left(\varepsilon^{+} F\right)^{b} \mathrm{~d}(N \odot \rho) \tag{8}
\end{equation*}
$$

this definition being justified by the fact that for \mathbb{P}-a.e. ω the map $y \mapsto F\left(\varepsilon_{y}^{+}(\omega)\right)-F(\omega)$ is in $\mathbf{d}, \varepsilon^{+} F$ belongs to $L^{\infty}(\mathbb{P}) \otimes \mathbf{d}$ algebraic tensor product, and $\left(\varepsilon^{+} F-F\right)^{b}=\left(\varepsilon^{+} F\right)^{b} \in L^{2}\left(\mathbb{P}_{N} \times \rho\right)$.

For $F, G \in \mathcal{D}_{0}$ of the form

$$
F=\sum_{p} \lambda_{p} \mathrm{e}^{\mathrm{i} \tilde{N}\left(f_{p}\right)}=\Phi\left(\tilde{N}\left(f_{1}\right), \ldots, \tilde{N}\left(f_{m}\right)\right), \quad G=\sum_{q} \mu_{q} \mathrm{e}^{\mathrm{i} \tilde{N}\left(g_{q}\right)}=\Psi\left(\tilde{N}\left(g_{1}\right), \ldots, \tilde{N}\left(g_{n}\right)\right)
$$

we compute using (2), (3) and (7) (in the spirit of Prop. 1 of [9] or Lemma 1.2 of [6])

$$
\begin{equation*}
\hat{\mathbb{E}}\left[F^{\sharp} \overline{G^{\sharp}}\right]=\sum_{p, q} \lambda_{p} \overline{\mu_{q}} \mathrm{e}^{\mathrm{i} \tilde{N}\left(f_{p}\right)-\mathrm{i} \tilde{N}\left(g_{q}\right)} N\left(\gamma\left[f_{p}, g_{q}\right]\right) \tag{9}
\end{equation*}
$$

and we have:
Proposition 3.1. If we put $A_{0}[F]=\sum_{p} \lambda_{p} \mathrm{e}^{\mathrm{i} \tilde{N}\left(f_{p}\right)}\left(\mathrm{i} \tilde{N}\left(a\left[f_{p}\right]\right)-\frac{1}{2} N\left(\gamma\left[f_{p}\right]\right)\right)$ it comes

$$
\begin{equation*}
\mathbb{E}\left[A_{0}[F] \bar{G}\right]=-\frac{1}{2} \mathbb{E} \sum_{p, q} \Phi_{p}^{\prime} \overline{\Psi_{q}^{\prime}} N\left(\gamma\left[f_{p}, g_{q}\right]\right) \tag{10}
\end{equation*}
$$

In order to show that $A_{0}[F]$ does not depend on the form of F, by (10) it is enough to show that the expression $\sum_{p, q} \Phi_{p}^{\prime} \overline{\Psi_{q}^{\prime}} N\left(\gamma\left[f_{p}, g_{q}\right]\right)$ depends only on F and G. But this comes from (9) since F^{\sharp} and G^{\sharp} depend only on F and G.

By this proposition, A_{0} is symmetric on \mathcal{D}_{0}, negative, and the argument of Friedrichs applies (cf. [3] p. 4), A_{0} extends uniquely to a selfadjoint operator $(A, \mathcal{D}(A))$ which defines a closed positive (hermitian) quadratic form $\mathcal{E}[F]=-\mathbb{E}[A[F] \bar{F}]$. By (10) contractions operate and (cf. [3]) \mathcal{E} is a Dirichlet form which is local with carré du champ denoted Γ and the up-structure obtained $(\Omega, \mathcal{A}, \mathbb{P}, \mathbb{D}, \Gamma)$ satisfies

$$
\begin{equation*}
\forall f \in \mathbf{d}, \quad \tilde{N}(f) \in \mathbb{D} \quad \text { and } \quad \Gamma[\tilde{N}(f)]=N(\gamma[f]) \tag{11}
\end{equation*}
$$

The operator $\#$ extends to a gradient for Γ as a closed operator from $L^{2}(\mathbb{P})$ into $L^{2}(\mathbb{P} \times \hat{\mathbb{P}})$ with domain \mathbb{D} which satisfies the chain rule and may be computed on functionals $\Phi\left(\tilde{N}\left(f_{1}\right), \ldots, \tilde{N}\left(f_{m}\right)\right), \Phi$ Lipschitz and \mathcal{C}^{1} and their limits in \mathbb{D} (as done in [4]).

Formula (8) for \sharp can be extended from \mathcal{D}_{0} to \mathbb{D}. Let us introduce the space \mathbb{D} closure of $\mathcal{D}_{0} \otimes \mathbf{d}$ for the norm

$$
\|H\|_{\underline{\mathbb{D}}}=\left(\mathbb{E} \int \gamma[H(\omega, \cdot)](x) N(\mathrm{~d} x)\right)^{1 / 2}+\mathbb{E} \int|H(\omega, x)| \xi(x) N(\mathrm{~d} x)
$$

where $\xi>0$ is a fixed function such that $N(\xi) \in L^{2}(\mathbb{P})$.
Theorem 3.2. The formula $F^{\sharp}=\int\left(\varepsilon^{+} F\right)^{b} \mathrm{~d}(N \odot \rho)$ decomposes as follows

$$
F \in \mathbb{D} \stackrel{\varepsilon^{+}}{\longmapsto} \varepsilon^{+} F \in \mathbb{D} \stackrel{b}{\longmapsto}\left(\varepsilon^{+} F\right)^{b} \in L_{0}^{2}\left(\mathbb{P}_{N} \times \rho\right) \stackrel{\mathrm{d}(N \odot \rho)}{\longmapsto} F^{\sharp} \in L^{2}(\mathbb{P} \times \hat{\mathbb{P}})
$$

where each operator is continuous on the range of the preceding one, $L_{0}^{2}\left(\mathbb{P}_{N} \times \rho\right)$ denoting the closed subspace of $L^{2}\left(\mathbb{P}_{N} \times \rho\right)$ of ρ-centered elements, and we have

$$
\begin{equation*}
\Gamma[F]=\hat{\mathbb{E}}\left|F^{\sharp}\right|^{2}=\int \gamma\left[\varepsilon^{+} F\right] \mathrm{d} N . \tag{12}
\end{equation*}
$$

4. The lent particle method

Let us consider, for instance, a real process Y_{t} with independent increments and Lévy measure σ integrating x^{2}, Y_{t} being supposed centered without Gaussian part. We assume that σ has an 1.s.c. density so that a local Dirichlet structure may be constructed on $\mathbb{R} \backslash\{0\}$ with carré du champ $\gamma[f]=x^{2} f^{\prime 2}(x)$. If N is the random Poisson measure with intensity $\mathrm{d} t \times \sigma$ we have $\int_{0}^{t} h(s) \mathrm{d} Y_{s}=\int 1_{[0, t]}(s) h(s) x \tilde{N}(\mathrm{~d} s \mathrm{~d} x)$ and the choice done for γ gives $\Gamma\left[\int_{0}^{t} h(s) \mathrm{d} Y_{s}\right]=$ $\int_{0}^{t} h^{2}(s) \mathrm{d}[Y, Y]_{s}$ for $h \in L_{\text {loc }}^{2}(\mathrm{~d} t)$. In order to study the regularity of the random variable $V=\int_{0}^{t} \varphi\left(Y_{s-}\right) \mathrm{d} Y_{s}$ where φ is Lipschitz and \mathcal{C}^{1}, we have two ways:
(a) We may represent the gradient \sharp as $Y_{t}^{\sharp}=B_{[Y, Y]_{t}}$ where B is a standard auxiliary independent Brownian motion. Then by the chain rule $V^{\sharp}=\int_{0}^{t} \varphi^{\prime}\left(Y_{s-}\right)\left(Y_{s-}\right)^{\sharp} \mathrm{d} Y_{s}+\int_{0}^{t} \varphi\left(Y_{s-}\right) \mathrm{d} B_{[Y]_{s}}$ now, using $\left(Y_{s-}\right)^{\sharp}=\left(Y_{s}^{\sharp}\right)_{-}$, a classical but rather tedious stochastic computation yields

$$
\begin{equation*}
\Gamma[V]=\hat{\mathbb{E}}\left[V^{\sharp 2}\right]=\sum_{\alpha \leqslant t} \Delta Y_{\alpha}^{2}\left(\int_{\mathrm{j} \alpha}^{t} \varphi^{\prime}\left(Y_{s-}\right) \mathrm{d} Y_{s}+\varphi\left(Y_{\alpha-}\right)\right)^{2} . \tag{13}
\end{equation*}
$$

Since V has real values the energy image density property holds, and V has a density as soon as $\Gamma[V]$ is strictly positive a.s. what may be discussed using the relation (13).
(b) Another more direct way consists in applying the theorem. For this we define b by choosing η such that $\int_{0}^{1} \eta(r) \mathrm{d} r=0$ and $\int_{0}^{1} \eta^{2}(r) \mathrm{d} r=1$ and putting $f^{b}=x f^{\prime}(x) \eta(r)$.
1°. First step. We add a particle (α, x) i.e. a jump to Y at time α with size x what gives $\varepsilon^{+} V-V=\varphi\left(Y_{\alpha-}\right) x+$ $\int_{\mathrm{l} \alpha}^{t}\left(\varphi\left(Y_{s-}+x\right)-\varphi\left(Y_{s-}\right)\right) \mathrm{d} Y_{s}$
2°. $V^{b}=0$ since V does not depend on x, and $\left(\varepsilon^{+} V\right)^{b}=\left(\varphi\left(Y_{\alpha-}\right) x+\int_{] \alpha}^{t} \varphi^{\prime}\left(Y_{s-}+x\right) x \mathrm{~d} Y_{s}\right) \eta(r)$ because $x^{b}=x \eta(r)$.
3°. We compute $\gamma\left[\varepsilon^{+} V\right]=\int\left(\varepsilon^{+} V\right)^{\mathrm{b} 2} \mathrm{~d} r=\left(\varphi\left(Y_{\alpha-}\right) x+\int_{1 \alpha}^{t} \varphi^{\prime}\left(Y_{s-}+x\right) x \mathrm{~d} Y_{s}\right)^{2}$.
4°. We take back the particle we gave, because in order to compute $\int \gamma\left[\varepsilon^{+} V\right] \mathrm{d} N$ the integral in N confuses $\varepsilon^{+} \omega$ and ω. That gives $\int \gamma\left[\varepsilon^{+} V\right] \mathrm{d} N=\int\left(\varphi\left(Y_{\alpha-}\right)+\int_{\mid \alpha}^{t} \varphi^{\prime}\left(Y_{s-}\right) \mathrm{d} Y_{s}\right)^{2} x^{2} N(\mathrm{~d} \alpha \mathrm{~d} x)$ and (13).

We remark that both operators $F \mapsto \varepsilon^{+} F, F \mapsto\left(\varepsilon^{+} F\right)^{\mathrm{b}}$ are non-local, but instead $F \mapsto \int\left(\varepsilon^{+} F\right)^{b} \mathrm{~d}(N \odot \rho)$ and $F \mapsto \int \gamma\left[\varepsilon^{+} F\right] \mathrm{d} N$ are local: taking back the lent particle gives the locality.

References

[1] S. Albeverio, Yu.G. Kondratiev, M. Röckner, Analysis and geometry on configuration spaces, J. Funct. Anal. 154 (2) (1998) 444-500.
[2] N. Bouleau, Error Calculus for Finance and Physics: The Language of Dirichlet Forms, De Gruyter, 2003.
[3] N. Bouleau, F. Hirsch, Dirichlet Forms and Analysis on Wiener Space, De Gruyter, 1991.
[4] L. Denis, A criterion of density for solutions of Poisson-driven SDEs, Probab. Theory Relat. Fields 118 (2000) 406-426.
[5] Y. Ishikawa, H. Kunita, Malliavin calculus on the Wiener-Poisson space and its application to canonical SDE with jumps, Stochastic Process. Appl. 116 (2006) 1743-1769.
[6] Z.-M. Ma, M. Röckner, Construction of diffusions on configuration spaces, Osaka J. Math. 37 (2000) 273-314.
[7] D. Nualart, J. Vives, Anticipative calculus for the Poisson process based on the Fock space, in: Sém. Probabilités XXIV, in: Lecture Notes in Math., vol. 1426, Springer, 1990, pp. 154-165.
[8] J. Picard, On the existence of smooth densities for jump processes, Probab. Theory Relat. Fields 105 (1996) 481-511.
[9] N. Privault, A pointwise equivalence of gradients on configuration spaces, C. R. Acad. Sci. Paris 327 (1998) 677-682.
[10] J.-L. Solé, F. Utzet, J. Vives, Canonical Lévy processes and Malliavin calculus, Stochastic Process. Appl. 117 (2007) $165-187$.

[^0]: E-mail address: bouleau@enpc.fr.

