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Abstract

We prove that, for a polynomial, every bounded Fatou component, with the exception of Siegel disks, has for boundary a Jordan
curve. To cite this article: P. Roesch, Y. Yin, C. R. Acad. Sci. Paris, Ser. I 346 (2008).
© 2008 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Résumé

Frontière des composantes de Fatou polynômiales. Nous montrons que le bord de toute composante de Fatou bornée d’ un
polynôme, hormis les disques de Siegel, est une courbe de Jordan. Pour citer cet article : P. Roesch, Y. Yin, C. R. Acad. Sci. Paris,
Ser. I 346 (2008).
© 2008 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Theorem 1. Let B be a bounded Fatou component of a polynomial f that is not eventually a Siegel disk, then ∂B is
a Jordan curve.

By hypothesis, B is the connected component of the immediate basin of attraction of an (eventually) attracting or
parabolic periodic point. For simplicity of the exposition, we assume that the Julia set is connected and we write the
proof in the attracting case, but the arguments are the one of the parabolic (and attracting) case. We fix a point x on ∂B

and construct a basis of connected neighborhoods as follows. Let Γ be a graph formed by an internal and an external
equipotential, a cycle of internal rays generated by some RB(ξ) (where ξ is periodic such that

⋃
n f n(x)∩RB(ξ) = ∅)

together with the external rays landing at their terminal points on ∂B . We denote by Pn(∗), the puzzle pieces, which are
the connected components of C \ f −n(Γ ). In the parabolic case internal rays (resp. equipotentials) are parabolic rays
(resp. parabolic equipotentials) see [4] or [6]. The puzzle piece containing x, Pn(x), is well defined and Pn(x)∩ ∂B is
a connected set since it is the intersection of the compact connected sets consisting in φ̄(Δn) where φ : D → B is the
Riemann map and Δn = {reit | r ∈ [1−1/n[, t ∈ [t1, t2]} some sector. Thus, let Imp(x) be the intersection

⋂
n Pn(x).

If Imp(x) ∩ ∂B = {x}, the sequence (Pn(x)) forms the investigated basis. Note that it does not depend on the graph.
Then Theorem 1 follows since by Carathérodory’s Theorem if ∂B is locally connected, it is a curve and it is simple
by the maximum principle.
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Proposition 2. If x is eventually periodic, either Imp(x) = {x} or two external rays converge to x separating
Imp(x) \ {x} from B so that Imp(x) ∩ ∂B = {x}.

Denote by Crit the set of critical points of f . We assume that for any z, P0(z) ∩ Crit ⊂ Imp(z) (up to starting the
puzzle at a deeper level).

Proof. The proof uses an argumentation similar to the one of Kiwi (see [2]). We assume (up to replacing f by an
iterate) that x is a fixed point and we suppose that Imp(x) �= {x}. The accessible fixed points in Imp(x) give us fixed
points of a map of S

1 as follows: Since Imp(x) is a compact connected set (as intersection of such sets), we can
consider a Riemann map φ : C \ Imp(x) → C \ D. The map g = φ ◦ f ◦ φ−1 is well defined on φ(P0(x) \ Imp(x))

since (P0(x) \ Imp(x)) ∩ Crit = ∅ so that there is no pre-image of Imp(x) in P0(x) other than Imp(x). First of all, if
Imp(x) ∩ ∂P0(x) �= ∅ (this happens only in the parabolic case), we consider U0 a small enlargement of P0(x) at those
points still satisfying the previous properties; then let V0 = φ(U0 \ Imp(x)), U1 = f −1(U0 \ Imp(x)) and V1 = φ(U1).
By Schwarz reflection principle on V1 and V0, we get Ṽ1 and Ṽ0 neighborhoods of S

1 and a map g̃ : Ṽ1 → Ṽ0 such
that g̃|V1

= g. Since g̃ is a holomorphic covering that preserves S
1 and each side, it has no critical point on S

1.
We now consider particular fixed points coming from rays in Pn(x) as follows. In ∂Pn(x) ∩ B , there are portions

of two internal rays RB(tn),RB(t ′n) and portions of two external rays R(ηn),R(η′
n) landing at the previous landing

points. The angles tn, t
′
n, respectively ηn, η

′
n, converge to some t , respectively to η,η′, since the puzzle pieces are

nested. Moreover, RB(t),R(η),R(η′) are fixed rays, since f (Pn(x)) = Pn−1(x). Let y be the landing point of RB(t)

and z, z′ of R(η),R(η′). Since y is either repelling or parabolic, it is the landing point of an external ray, say R(θ),
which is fixed since RB(t) is a fixed internal ray. The curve φ(R(θ)) converges to some point in S

1 and we chose φ

such that this point is 1. We suppose to get a contradiction that y �= z (the same argument holds for y �= z′). Then the
limit of φ(R(η)) and 1 are two fixed points of g̃. It is not very difficult to see that the fixed points of g̃ are all weakly
repelling, that is |g̃(x)−p|S1 > |x−p|S1 for a fixed point p (see [2,6]). Then, it is easy to see on a lift of g̃ that between
two fixed points of g̃ there is a preimage by g̃ of 1. Thus, each connected component of V1 \ (φ(R(θ)) ∪ φ(R(η)))

contains a preimage of φ(R(θ)). The same holds for the open set U1 \ Imp(x): it is cut in two components by R(θ)

and R(η) and each one contains a preimage of R(θ). Hence there are R(θ ′),R(θ ′′) preimages of R(θ) such that
θ < θ ′ < η < θ ′′ < θ + 2π . Since R(θ ′),R(θ ′′) land on Imp(x) these rays enter every puzzle piece Pn(x) so that
at least one of the angle θ ′, θ ′′ belongs to the intervals (ηn, η), (η′

n, η
′) whose diameters tend to 0. This gives the

contradiction since it would implies that θ ′ or θ ′′ equal η or η′. Then y = z = z′ so that R(η) and R(η′) land at the
same point.

Let W0 be the union of the connected components of P0(x) \ (R(η) ∪ R(η′) ∪ {z}) intersecting B . Assume to get
a contradiction that Imp(x) ∩ W0 = I �= ∅. The set I contains more than one point. Either there is a critical point in
I so that there is a preimage of y in I with a preimage R(ζ ) of R(θ) landing at it or the map f :W1 → W0 is an
homeomorphism where W1 is the connected component of P1(x) \ (R(η) ∪ R(η′)) intersecting B and W1 ⊂ W0. In
the first case the angle ζ belongs to one of the intervals (ηn, η)∪ (η′

n, η
′) whose diameters tend to 0, thus ζ = η which

gives the contradiction. In the second case, f −1
0 :W0 → W1 is a conformal map. By Denjoy–Wolff’s Theorem, the

iterates by f −1
0 of every point of W0 converge to a unique point in W 0, but this is not possible since I ⊂ (f −1

0 )n(W0)

for all n > 0. Hence the two rays R(η),R(η′) separate B from Imp(x) \ {x}. Finally, the sets P n(x)∩ ∂B form a basis
of connected neighborhoods of x in ∂B . �
Lemma 3. If x is not eventually periodic but the ω-limit set of x contains an eventually periodic point y, then
Imp(x) ∩ ∂B = {x}.

Note that any point of ω(x) is accumulated by x in the following sense:

Definition 4. We say that z1 accumulates z2 if for every n there exists k such that f k(z1) ∈ Pn(z2).

Denote by b, resp. dmax, the number of critical impressions, resp. the maximal degree of f on those sets. To prove
Lemma 3 we will use the following lemma:
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Lemma 5. For k � 0 and for t the smallest integer such that f t (x) ∈ Pk(c) for some c, the degree of f t :Pk+t (x) →
Pk(c) is bounded by dmaxb .

Proof of Lemma 5. Every critical point appears at most once in the sequence f i(Pk+t (x)) for 0 � i � t , otherwise c

would appear in some puzzle piece Pk(f
j (x)) for j < t . The result follows. �

Proof of Lemma 3. We assume (up to iterate f ) that y is fixed. It is on ∂B and by Proposition 2 Imp(y) ∩ ∂B =
{y}. Here we choose a graph for y, that will be also good for x. Hence, for every n ∈ N there exists a smallest
kn such that f kn(x) ∈ Pn(y) and a smallest mn � n such that f kn(x) /∈ Pmn(y). Hence y ∈ Pmn−1−i (f

kn+i (x)) \
Pmn−i (f

kn+i (x)) for every i � mn−1. So the map f mn :Pmn(f
kn(x)) → P0(f

mn+kn(x)) is an homeomorphism, since
P0(y)∩Crit ⊂ Imp(y). The annulus A = P0(y)\P 1(y) is non degenerate for any graph that do not contain the internal
fixed ray converging to y. So let k′

n � mn + kn + 1 be the smallest such that f k′
n(x) ∈ P1(y). Then the modulus of

Pk′
n
(x)\P k′

n+1(x) is bigger than or equal to mod(A)/dmax2b . Indeed, the map f mn+kn : Pmn+kn(x) → P0(f
mn+kn(x))

has degree less than or equal to dmaxb since kn is the first integer such that f kn(x) ∈ Pn(y), and the degree of
f k′

n−(mn+kn) :Pk′
n−(mn+kn)(f

mn+kn(x)) → P0(f
k′
n(x)) is less or equal than dmaxb . Now, choose n1 � k′

n and repeat
the argument again, and so on. One gets a sequence of annuli Pk′

ni
(x) \ P k′

ni
+1(x) of modulus bounded below by

mod(A)/dmax2b . Therefore Imp(x) = {x}. �
Definition 6. Denote by Crit(z) the set of critical points accumulated by a point z. Let Crita be the set of critical points
accumulating themselves and Critnr the ones not accumulating points of Crit. They are disjoint sets and every critical
point belongs to or accumulates on Crita ∪Critnr (since the property of accumulation is transitive). So we concentrate
on Crita that we decompose in Critrr ∪ Critpr as follows. A piece Pn+k(c

′) is a child of Pn(c) if c, c′ ∈ Crit, c

accumulates c′ and f k−1 : Pn+k−1(f (c′)) → Pn(c) is conformal. Then c is said persistently recurrent, i.e. in Critpr ,
if for every c′ ∈ Crit(c) accumulating c, Pn(c

′) has a finite number of children for every n � 0. Else c is said reluctantly
recurrent, in Critrr .

In the following we consider only points that do not contain eventually periodic points in their ω-limit set:

Proposition 7. If Crit(x) = ∅ or if Crit(x) ∩ (Critnr ∪ Critrr ) �= ∅, then Imp(x) = {x}.

Lemma 8. For any puzzle piece Pn0 and any sequence (nk), such that f nk (x) ∈ Pn0 , there exists some r � 1 and a
subsequence (nki

) of (nk) such that f nki (x) ∈ Pn0+r and P n0+r ⊂ Pn0 .

Proof. In this proof, we consider only puzzle pieces containing infinitely many points of the sequence f nk (x). Either
there is a puzzle piece Pn0+r compactly contained in Pn0 for some r � 1 or, for every decreasing sequence Pn0+r ,
∂Pn0+r intersects ∂Pn0 ∩ ∂B at one point = {z} for every r � 1. The point z is eventually repelling since ∂Pn0 and
∂Pn0+1 can only intersect at the landing points of rays. Therefore, Imp(z) ∩ ∂B = {z} (by Proposition 2) so that
z ∈ ω(x) since x ∈ ∂B . This contradicts the hypothesis that there is no eventually periodic point in ω(x). �
Corollary 9. If Pn0 and (nk) satisfy that f nk :Pnk+n0(x) → Pn0 has bounded degree, then Imp(x) = {x}.

Proof. By Lemma 8, for this puzzle piece Pn0 and this sequence (nk), we can find a puzzle piece Pn0+r such
that P n0+r ⊂ Pn0 and f nki (x) ∈ Pn0+r for a subsequence nki

of nk . Then by classical results, the modulus
mod(Pn0+nki

(x) \ P n0+r+nki
(x)) is greater than mod(Pn0 \ P n0+r )/D where D is the bound on the degree. Therefore

Imp(x) = {x}.
Corollary 9 implies that we do not need to search non degenerate annuli in this special case. �

Proof of Proposition 7. If Crit(x) = ∅, there is a level n0 such that there is no critical points in Pn0+j (f
i(x))

for i, j > 0. Then for every k � 0 the map f k :Pn0+k(x) → Pn0(f
k(x)) is of degree at most dmax. Since there is

only a finite number of puzzle pieces of depth n0, there are a puzzle piece Pn0 and a subsequence {ki} such that
Pn0(f

ki (x)) = Pn0 . The result follows from Corollary 9.
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If c ∈ Crit(x) ∩ Critnr , there is a level n0 such that for every k � 0 the map f k :Pn0+k(c) → Pn0(f
k(c)) is

of degree at most dmax. Let tk be the smallest integer such that f tk (x) ∈ Pn0+k(c). By Lemma 5 the degree of
f tk :Pn0+k+tk (x) → Pn0+k(c) is bounded by dmaxb . There exists at least one piece Pn0 such that Pn0 = Pn0(f

k(c))

for infinitely many values of k � 0. Therefore the assumptions of Corollary 9 are satisfied and the result follows.
If x accumulates c ∈ Critrr , there exists c′, c′′ ∈ Crit, a level n0 and a sequence (ki) such that the map

f ki :Pn0+ki
(c′′) → Pn0(c

′) is of degree at most dmax (there are infinitely many children of Pn0(c
′)). For every i � 0 let

ti be the smallest integer such that f ti (c) ∈ Pn0+ki
(c′′) and let li be the smallest integer such that f li (x) ∈ Pn0+ki+li (c),

they exist since c accumulates c′′ and x accumulates c. By Lemma 5 the degree of f li+ti+ki : Pn0+li+ti+ki
(x) →

Pn0(c
′) is bounded by dmax2b+1. As above the result follows. �

We assume now that c0 ∈ Crit(x) ⊂ Critpr . For any puzzle piece Pn0 containing c0 Lemma 8 gives for some r � 1 a
non degenerate annulus Pn0 \P n0+r . We construct from Pn0+r a nest (Kn), (K

′
n) called KSS nest (see [3]) as follows.

Define the first hit containing a point z to a puzzle piece I as Lz(I) the connected component containing z of the
points of I coming back in I for the first time. Thus, to any puzzle piece I containing c0, we associate two puzzle

pieces A(I) and B(I) satisfying the following properties: A(I) ⊂ B(I), for some t the map f t :B(I) → I has degree
less than dmaxb2

, the orbit of critical points accumulated by c0 never meets B(I) \ A(I) and f t (A(I)) = Lf t (c0)(I ).
Then consider K0,K

′
0 defined by K0 = B(A(I)) with f t0(K0) = A(I) and K ′

0 is the connected component containing
c0 of (f t0)−1(B(I)). Let us continue the induction by taking I1 = Γ T (K0) where T is some constant and Γ (J ) is the
last successor of J . The last successor of a puzzle piece J is a puzzle piece Γ (J ) such that f j (Γ (J )) = J with the
largest j = l + m + o such that f o(Γ (J )) = Qc′ is a child of some Pc (exactly f m(Qc′) = Pc) and f l(Pc) = J . In
particular we have the property that f i(Γ (J )) does not contain c0 for all 0 < i < j . Iterating the process, we obtain a
sequence In and then the KSS nest (Kn), (K

′
n).

Lemma 10. Let (Kn), (K
′
n) be the KSS nest constructed from Pn0+r , then level(K ′

n) − level(Kn) → ∞.

Proof. Denote by r(P ) the minimal time of first return to P of points of P . By definition, level(K ′
n) − level(Kn) =

level(B(In)) − level(A(In)) � r(In). Now, for J, j as above, as f i(Γ (J )) does not contain c0 for all 0 < i < j ,
r(Γ (J )) � q where f q(Γ (J )) = J . Since every piece has at least two successors, r(Γ (J )) � 2r(J ). Therefore
r(In+1) � 2T r(In) so that r(In) tends to ∞ and so does level(K ′

n) − level(Kn). �
Corollary 11. The set K ′

n \ Kn is a non degenerate annulus for large n.

Proof. For jn such that f jn(Kn) = Pn0+r , the annulus K ′
n \ Kn contains Pn0+jn \ P n0+jn+r for large n (Lemma 10).

So it is non degenerate since f jn(Pn0+jn) = Pn0 and f jn(Pn0+jn+r ) = Pn0+r .

Proposition 12. If every c accumulated by x ∈ ∂B belongs to Critpr , then Imp(x) = {x}.

Proof. Since the annuli K ′
n \ Kn are non degenerate, the same argument as in [5] allows us to conclude that there

is some positive constant μ such that mod(K ′
n \ Kn) � μ (this uses in particular Kahn–Lyubich’s Lemma, see [1]).

The pieces Kn,K
′
n are of the form Pkn(c0),Pk′

n
(c0). Since x accumulates c0, let ln be the smallest integer such that

f ln(x) ∈ Kn. By Lemma 5, the degree of the map f ln :Pkn+ln (x) → Pkn(c0) is bounded by dmaxb . Moreover, the
orbit of any the critical point accumulated by c0 does never enter K ′

n \ Kn, by the construction of the KSS nest.
Therefore the degree is bounded by the same constant D for the map f ln :Pk′

n+ln (x) → Pk′
n
(c0) so that the modulus

of the annulus Pk′
n+ln (x) \ P kn+ln (x) is greater than μ/D which implies that Imp(x) = {x}. �
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