Complex Analysis

An extremal problem for a class of entire functions

Alexandre Eremenko ${ }^{\text {a,1 }}$, Peter Yuditskii ${ }^{\text {b,2 }}$
${ }^{\text {a }}$ Purdue University, West Lafayette, IN 47907, USA
${ }^{\text {b }}$ J. Kepler University, Linz A-4040, Austria
Received 29 May 2008; accepted 18 June 2008
Available online 25 July 2008
Presented by Paul Malliavin

Abstract

Let f be an entire function of the exponential type, such that the indicator diagram is in $[-\mathrm{i} \sigma, \mathrm{i} \sigma], \sigma>0$. Then the upper density of f is bounded by $c \sigma$, where $c \approx 1.508879$ is the unique solution of the equation $$
\log \left(\sqrt{c^{2}+1}+c\right)=\sqrt{1+c^{-2}}
$$

This bound is optimal. To cite this article: A. Eremenko, P. Yuditskii, C. R. Acad. Sci. Paris, Ser. I 346 (2008). © 2008 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Résumé

Un problème extrêmal pour une classe de fonctions entières. Soit f une fonction entière d'indicatrice contenue dans l'intervalle $[-\mathrm{i} \sigma, \mathrm{i} \sigma], \sigma>0$. Alors la borne supérieure des zéros de f ne dépasse pas $c \sigma$, où $c \approx 1,508879$ est la solution d'équation,

$$
\log \left(\sqrt{c^{2}+1}+c\right)=\sqrt{1+c^{-2}}
$$

Cette borne est exacte. Pour citer cet article : A. Eremenko, P. Yuditskii, C. R. Acad. Sci. Paris, Ser. I 346 (2008).
© 2008 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

We consider the class $E_{\sigma}, \sigma>0$ of entire functions of exponential type whose indicator diagram is contained in a segment $[-\mathrm{i} \sigma, \mathrm{i} \sigma]$, which means that

$$
\begin{equation*}
h(\theta):=\limsup _{r \rightarrow+\infty} \frac{\log \left|f\left(r \mathrm{e}^{\mathrm{i} \theta}\right)\right|}{r} \leqslant \sigma|\sin \theta|, \quad|\theta| \leqslant \pi . \tag{1}
\end{equation*}
$$

An alternative characterization of such functions follows from a theorem of Pólya [6]:

$$
f(z)=\frac{1}{2 \pi} \int_{\gamma} F(\zeta) \mathrm{e}^{-\mathrm{i} \zeta z} \mathrm{~d} \zeta
$$

[^0]where F is an analytic function in $\overline{\mathbf{C}} \backslash[-\sigma, \sigma], F(\infty)=0$, and γ is a closed contour going once around the segment $[-\sigma, \sigma]$. In other words, the class of entire functions satisfying (1) are Fourier transforms of hyperfunctions supported by $[-\sigma, \sigma]$, see, for example, [2] and [3].

Let $n(r)$ be the number of zeros of f in the disc $\{z:|z| \leqslant r\}$, counting multiplicity. We are interested in the upper density:

$$
\begin{equation*}
D=\underset{r \rightarrow \infty}{\limsup } \frac{n(r)}{r} . \tag{2}
\end{equation*}
$$

If f satisfies the additional condition:

$$
\begin{equation*}
\int_{-\infty}^{\infty} \frac{\log ^{+}|f(x)|}{1+x^{2}} \mathrm{~d} x<\infty \tag{3}
\end{equation*}
$$

then the limit (density) in (2) exists and equals $(2 \pi)^{-1} \int_{-\pi}^{\pi} h(\theta) \mathrm{d} \theta$. For example, if $f(z)=\sin \sigma z$, then $f \in E_{\sigma}$ and $D=2 \sigma / \pi \approx 0.6366 \sigma$. The existence of the limit follows from a theorem of Levinson [5,6]. Much more precise information about $n(r)$ under the condition (3) is contained in the theorem of Beurling and Malliavin [1].

In the general case, the density might not exist as was shown by examples in [4,10]. Moreover, it is possible that $D>2 \sigma / \pi$, see [2]. An easy estimate using Jensen's formula gives $D \leqslant 2 \mathrm{e} \sigma / \pi \approx 1.7305 \sigma$. This estimate is exact in the larger class of entire functions satisfying the condition $h(\theta) \leqslant \sigma$, but it is not exact in E_{σ}.

In this Note we find the best possible upper estimate for the upper density of zeros of functions in E_{σ}.
Theorem. The upper density of zeros of a function $f \in E_{\sigma}$ does not exceed $c \sigma$, where $c \approx 1.508879$ is the unique solution of the equation:

$$
\begin{equation*}
\log \left(\sqrt{c^{2}+1}+c\right)=\sqrt{1+c^{-2}}, \quad \text { on }(0,+\infty) \tag{4}
\end{equation*}
$$

For every $\sigma>0$ there exist entire functions $f \in E_{\sigma}$ such that $D=c \sigma$.
Proof. Without loss of generality we assume that $\sigma=1$. Moreover, it is enough to consider only even functions. To make a function f even we replace it by $f(z) f(-z)$, which results in multiplication of both the indicator h and the upper density D by the same factor of 2 .

Let $t_{n} \rightarrow+\infty$ be such sequence that $\lim n\left(t_{n}\right) / t_{n}=D$. Consider the sequence of subharmonic functions $v_{n}(z)=$ $t_{n}^{-1} \log \left|f\left(t_{n} z\right)\right|$. Compactness Principle for subharmonic functions [3, Theorem 4.1.9] implies that one can choose a subsequence that converges in \mathscr{D}^{\prime} (Schwartz's distributions). The limit function v is subharmonic in the plane, and satisfies:

$$
\begin{equation*}
v(z) \leqslant|\operatorname{Im} z|, \quad z \in \mathbf{C}, \quad \text { and } \quad v(0)=0 . \tag{5}
\end{equation*}
$$

Let μ be the Riesz measure of this function. We have to show that

$$
\begin{equation*}
\mu(\{z:|z| \leqslant 1\}) \leqslant c \tag{6}
\end{equation*}
$$

First we reduce the problem to the case that the Riesz measure μ is supported by the real line. We have

$$
v(z)=\frac{1}{2} \int \log \left|1-\frac{z^{2}}{\zeta^{2}}\right| \mathrm{d} \mu_{\zeta} .
$$

Let us compare this with

$$
v^{*}(z)=\frac{1}{2} \int_{0}^{\infty} \log \left|1-\frac{z^{2}}{t^{2}}\right| \mathrm{d} \mu_{t}^{*}
$$

where μ^{*} is the radial projection of the measure μ : it is supported on $[0,+\infty)$ and $\mu^{*}(a, b)=\mu(\{z: a<$ $|z|<b\}), 0 \leqslant a<b$. It is easy to see that

$$
\begin{equation*}
v^{*}(z) \leqslant \sigma^{\prime}|\operatorname{Im} z|, \quad z \in \mathbf{C}, \quad \text { and } \quad v^{*}(0)=0, \tag{7}
\end{equation*}
$$

with some $\sigma^{\prime}>0$. We claim that one can choose $\sigma^{\prime} \leqslant 1$ in (7). Let σ^{\prime} be the smallest number for which (7) holds. Then, by the subharmonic version of the theorem of Levinson mentioned above (see, for example, [9]), the limit

$$
\lim _{r \rightarrow \infty} r^{-1} v^{*}(r z)=\sigma^{\prime}|\operatorname{Im} z|
$$

exists in \mathscr{D}^{\prime} and thus

$$
\lim _{r \rightarrow \infty} \frac{1}{r} \int_{0}^{r} \frac{n_{v^{*}}(t)}{t} \mathrm{~d} t=\lim _{r \rightarrow \infty} \frac{1}{2 \pi r} \int_{-\pi}^{\pi} v^{*}\left(r \mathrm{e}^{\mathrm{i} \theta}\right) \mathrm{d} \theta=\frac{2 \sigma^{\prime}}{\pi}
$$

where

$$
\begin{equation*}
n_{v^{*}}(r)=\mu^{*}[0, r]=\mu\{z:|z| \leqslant r\} . \tag{8}
\end{equation*}
$$

Similar limits exist for v, and we have $n_{v}=n_{v^{*}}$, from which we conclude that $\sigma^{\prime} \leqslant 1$.
From now on we assume that v is harmonic in the upper and lower half-planes, and that

$$
\begin{equation*}
v(\mathrm{i} y) \sim y, \quad y \rightarrow+\infty . \tag{9}
\end{equation*}
$$

Let u be the harmonic function in the upper half-plane such that $\phi=u+i v$ is analytic, and $\phi(0)=0$. Then ϕ is a conformal map of the upper half-plane onto some region G of the form:

$$
\begin{equation*}
G=\{x+\mathrm{i} y: y>g(x)\}, \tag{10}
\end{equation*}
$$

where g is an even upper semi-continuous function, $g(0)=0$. Moreover,

$$
\begin{equation*}
\phi(\mathrm{i} y) \sim \mathrm{i} y, \quad \text { as } y \rightarrow+\infty, \tag{11}
\end{equation*}
$$

which follows from (9), and

$$
\begin{equation*}
\phi(-\bar{z})=-\overline{\phi(z)}, \tag{12}
\end{equation*}
$$

because both the region G and the normalization of ϕ are symmetric with respect to the imaginary axis. Finally, we have:

$$
\begin{equation*}
\mu([0, x])=\frac{2}{\pi} u(x) . \tag{13}
\end{equation*}
$$

For all these facts we refer to $[7,8]$.
Remark. The function $\operatorname{Re} \phi(x)=u(x)$ might be discontinuous for $x \in \mathbf{R}$. We agree to understand $u(x)$ as the limit from the right $u(x+0)$ which always exists since u is increasing.

Inequality (5) implies that $v(x) \leqslant 0$, thus $g(x) \leqslant 0$, in other words, G contains the upper half-plane.
Thus we obtain the following extremal problem: Among all univalent analytic functions ϕ satisfying (12) and mapping the upper half-plane onto regions of the form (10) with $g \leqslant 0, g(0)=0$ and satisfying $\phi(0)=0$ and (11), maximize $\operatorname{Re} \phi(1)$.

We claim that the extremal function g for this problem is:

$$
g_{0}(x)= \begin{cases}-\infty, & 0<|x|<\pi c / 2 \\ 0, & \text { otherwise }\end{cases}
$$

where $c>1$ is the solution of Eq. (4). The corresponding region is shown in Fig. 1. For the extremal function we have $\phi_{0}(1)=\pi c / 2-\mathrm{i} \infty$.

To prove the claim, we first notice that for a given G the mapping function is uniquely defined. Let $a=\phi(1)$, and $b=\operatorname{Re} a$. Next we show that making g smaller on the interval $(0, b)$ results in increasing $\operatorname{Re} \phi(1)$ and for g larger on the interval $(b,+\infty)$ also results in increasing $\operatorname{Re} \phi(1)$. The proofs of both statements are similar. Suppose that $g_{1} \leqslant g, g_{1} \neq g$, and $g_{1}(x)=g(x)$ outside of the two intervals $p<|x|<q$, where $0<p<q<b$. Let G_{1} be the

Fig. 1. Extremal region.
region above the graph of g_{1}, and ϕ_{1} the corresponding mapping function normalized in the same way as g. Then $G \subset G_{1}$, and the conformal map $\phi_{1}^{-1} \circ \phi$ is defined in the upper half-plane and maps it into itself. We have:

$$
\phi_{1}^{-1} \circ \phi(x)=x+2 x \int_{0}^{\infty} \frac{w(t)}{t^{2}-x^{2}} \mathrm{~d} t,
$$

where $w \neq 0$ is a non-negative function supported on some interval inside $(0,1)$. Putting $x=1$ we obtain:

$$
\phi_{1}^{-1}(a)=1+2 \int_{0}^{\infty} \frac{w(t)}{t^{2}-1} \mathrm{~d} t
$$

so $\phi_{1}^{-1}(a)<1$, that is $\operatorname{Re} \phi_{1}(1)>b$. This proves our claim.
It remains to compute the constant b in the extremal domain. We recall that $\phi_{0}(1)=b-\mathrm{i} \infty$ and assume that $b=\phi_{0}(k)$ for some $k>1$. Here ϕ_{0} is the extremal mapping function. Then by the Schwarz-Christoffel formula we have:

$$
\begin{equation*}
\phi_{0}(z)=\frac{1}{2} \int_{0}^{z^{2}} \frac{\sqrt{\zeta-k^{2}}}{\zeta-1} \mathrm{~d} \zeta \tag{14}
\end{equation*}
$$

To find k, we use the condition that

$$
\operatorname{Im} p . v . \int_{0}^{k^{2}} \frac{\sqrt{\zeta-k^{2}}}{\zeta-1} \mathrm{~d} \zeta=0
$$

Denoting $c=\sqrt{k^{2}-1}$ and evaluating the integral, we obtain

$$
\log \left(\sqrt{c^{2}+1}+c\right)=\sqrt{1+c^{-2}}
$$

Finally the jump of the real part of the integral in (14) occurs at the point 1 and has magnitude $\pi \sqrt{k^{2}-1}=\pi c$. This completes the proof of the upper estimate in Theorem 1.

To construct an example showing that this estimate can be attained, we follow the construction in [2, Sections 9-10]. The role of the subharmonic function u_{1} there is played now by our extremal function $v_{0}=\operatorname{Im} \phi_{0}$.

References

[1] A. Beurling, P. Malliavin, On Fourier transforms of measures with compact support, Acta Math. 118 (1967) 291-309.
[2] A. Eremenko, D. Novikov, Oscillation of Fourier integrals with a spectral gap, J. Math. Pures Appl. 83 (3) (2004) $313-365$.
[3] L. Hörmander, Analysis of Linear Partial Differential Operators, vols. I, II, Springer, Berlin, 1983.
[4] P. Kahane, L. Rubel, On Weierstrass products of zero type on the real axis, Illinois Math. J. 4 (1960) 584-592.
[5] P. Koosis, Leçons sur le théorème de Beurling et Malliavin, Publ. CRM, Montréal, 1996.
[6] B. Levin, Distribution of Zeros of Entire Functions, Amer. Math. Soc., Providence, RI, 1980.
[7] B. Levin, Subharmonic majorants and some applications, in: Complex Analysis, Birkhäuser, Basel, 1988, pp. 181-190.
[8] B. Levin, The connection of a majorant with a conformal mapping, II, Teor. Funktsii Funktional Anal. i Prilozhen. 52 (1989) 3-21 (in Russian). English translation in: J. Soviet Math. 52 (5) (1990) 3351-3364.
[9] V. Matsaev, M. Sodin, Distribution of Hilbert transforms of measures, Geom. Funct. Anal. 10 (2000) 1, 160-184.
[10] C. Roumieu, Sur quelques extensions de la notion de distribution, Ann. Sci. École Norm. Sup. 77 (1960) 41-121.

[^0]: E-mail addresses: eremenko@math.purdue.edu (A. Eremenko), Petro.Yudytskiy@jku.at (P. Yuditskii).
 1 Supported by NSF grant DMS-0555279.
 2 Supported by Austrian Fund FWF P20413-N18.

