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Abstract

We extend the method of Zariski to determine the braid monodromy group of the discriminant of a versal unfolding of a
hypersurface singularity from low-dimensional generic subunfoldings to highly non-generic ones. At the expense of an induction
over adjacent singularities, it is thus possible to neglect genericity issues and perturb by very simple polynomials only. To cite this
article: M. Lönne, C. R. Acad. Sci. Paris, Ser. I 346 (2008).
© 2008 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Résumé

Monodromie verselle des tresses. Nous étendons la méthode de Zariski, qui sert à déterminer la monodromie des tresses
pour le discriminant d’une déformation verselle de singularités d’une hypersurface, d’une sous-déformation générique de basse
dimension vers des déformations hautement non génériques. Aux frais d’une induction sur les singularités adjacentes, mais sans
devoir prendre en compte les questions de généricité, il est possible ainsi de déformer par des polynômes très simples. Pour citer
cet article : M. Lönne, C. R. Acad. Sci. Paris, Ser. I 346 (2008).
© 2008 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

Due to a wealth of remarkable properties the versal unfolding of a hypersurface singularity f has been a challenge
for a long time. It governs the Milnor fibre, the intersection lattice and the monodromy of f . These data are also
obtained from a Morsification or inductively from singularities adjacent to f , cf. [1,3].

We are interested in the braid monodromy group of discriminant complements of versal unfoldings. This invariant
of f is given also by discriminant complements of suitable subunfoldings, which we call Zariskification, since their
existence is due to Zariski’s result on generic hypersurface sections.

In this Note we define the notion of versal braid monodromy group for any subunfolding, which takes into account
the braid monodromies of versal unfoldings of adjacent singularities, and we show that it coincides with the braid
monodromy group of f under a weak transversality condition, cf. [2].

We thus gain much flexibility in the choice of subunfoldings, which has been exploited with great success in the
computation [6,5] of the braid monodromy and the fundamental group of discriminant complements for Brieskorn–
Pham polynomials. (In this Note we generally employ the notions and notations of [1].)
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2. Distinguished classes of unfoldings

It is well known that a Morsification of an isolated singularity f ∈On can be understood as an unfolding

ft,u : Cn × C2, 0 → C, x, t, u �→ ft,u(x) = ft (x) − u, f0(x) = f (x),

of hypersurfaces, induced by a map ϕ̂ : C2 → Cμ ∼= On/Jf to the base of a miniversal unfolding with image of ϕ̂

restricted to constant t0 �= 0 transversal to the discriminant D, i.e. transversal to Dreg and disjoint from Dsing.
In analogy we want to define a Zariskification to be an unfolding of functions

fs,t : Cn × C2, 0 → C, x, s, t �→ fs,t (x), f0,0(x) = f (x), fs,t (0) = 0,
∂f

∂t
(0) �= 0,

which is induced by a map ϕ : C2,0 → Cμ−1 ∼= mn/Jf to the base of a truncated miniversal unfolding such that the
image of ϕ restricted to constant s0 �= 0 is transversal to the function bifurcation set B.

There is also an analogue for the fact that Morsifications determine the monodromy group of f :

Lemma 2.1. The braid monodromy group of a Zariskification is equal to the braid monodromy group.

Proof. It suffices to recall the analogous argument for Morsifications. The essential input is, that a curve imϕ|s=s0 ,
s0 �= 0 is transversal to B and therefore the induced map on fundamental groups surjects. �

Next we define versal braid monodromy groups for unfoldings F : Cn × Ck → C, which are B-transversal in the
sense that the inducing map ϕF does not map all tangents at 0 to the Zariski tangent space of B. For sake of clarity we
restrict ourselves to tame unfoldings, where outside codimension two, each function is tame, i.e. critical values may
only coincide for non-degenerate critical points.

Given a family of functions fλ with f0 tame and fλ Morse for λ �= 0 the associated family pλ of discriminant
polynomials consists of monic, univariate polynomials which only have simple zeroes for λ �= 0:

pλ(u) = 0 ⇔ ∃x: gradx fλ(x) = 0, fλ(x) = u.

Let vj denote the roots of p0. Then for ε > 0 and 0 < δ 	 ε sufficiently small, the discriminant complement
Y = C × Dδ \ p−1

λ (0) is trivializable over the disc Dδ in the complement of
⋃

j Bε(vj ), Fig. 1.
In any fibre Yλ,0 < |λ| < δ we assign a group of mapping classes choosing generators – for each vj – supported

on punctured discs Dj = Yλ ∩ Bε(vj ):
In case that vj is a multiple root of p0, which is the image of a single critical point cj of f , we assign the braid

monodromy group for the germ of f at cj consisting of mapping classes supported on Dj .
In case vj is the image of non-degenerate critical points of f , we choose the group of mapping classes of Dj which

fix the punctures and thus correspond to pure braids.
Given a tame B-transversal unfolding we assign groups of mapping classes to each tame function using local

slices to the bifurcation locus. The versal braid monodromy group is then defined to be generated by all such classes

Fig. 1. Polynomial family.
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transported along all possible paths to a reference fibre. It is determined as a subgroup of the braid group Brn up to
conjugacy.

We have a result simplifying the computation of versal braid monodromy groups:

Proposition 2.2. If a family of polynomials is induced from a B-transversal unfolding and induces a surjection of
fundamental groups of bifurcation complements, the versal braid monodromy groups are isomorphic.

Proof. Choose compatible base points. Given a generator β in the versal braid monodromy there exists by definition a
disc slicing a component B of the bifurcation locus and a path γ in the bifurcation complement such that β is obtained
by transport along γ from a mapping class φ associated to the family over the disc. By surjectivity there is another
disc transversal to B and a path γ ′ which both lift to the induced family. Moreover there is an arc α arbitrarily close
to Breg. Stratified isotopy shows that the versal braid monodromies of the discs are identified under transport along α.
Thus there is a braid β ′ obtained from φ by transport along α and γ ′ which is in the versal braid monodromy of the
induced family. Since β and β ′ are equal up to transport along the composite of α with both paths, also β is in the
monodromy of the induced family by the surjectivity property again. �
3. Comparison of braid monodromies

Theorem 3.1. The braid monodromy group of a function f is equal to the versal braid monodromy group of any of its
B-transversal unfoldings which is tame.

Proof. Given a B-transversal unfolding we may induce another one meeting the hypotheses of Proposition 2.2

fs′,t : Cn × C2, 0 → C, f0,0(x) = f (x), fs′,t (0) = 0,
∂f

∂t
(0) /∈ TZarB,

which thus has the same versal braid monodromy. By the condition on the tangent the unfolding f0,t + sg is a
Zariskification for generic g ∈ mn. Hence for all sufficiently small ε �= 0 the two-parameter family F = fε,t + sg has
the same braid monodromy as any versal unfolding of f while the one-parameter family F |s=0 = fε,t has the same
versal braid monodromy as the given B-transversal unfolding.

For each point yi in the bifurcation set on the line s = 0 let Ui be a small ball in the base of F centered at yi .
We fix a sufficiently small tubular neighbourhood Nη of the line s = 0, such that the bifurcation set of F |Nη is in the
union of the Ui with singular locus in a subset of the yi . The braid monodromy of F |Nη is thus equal to the braid
monodromy of f . On the other hand it is generated by the braid monodromies of the F |Ui

and parallel transport over
the complement of the Ui . This should be compared to the fact that the versal braid monodromy of F |s=0 is generated
by the versal braid monodromies of F |Ei

– where Ei denotes the intersection of s = 0 with Ui – and parallel transport
over the complement of the Ei .

So it remains to prove that the versal braid monodromy of F |Ei
is equal to the braid monodromy of F |Ui

for each i,
since the complement of the Ui in Nη retracts onto the complement of the Ei on s = 0.

Let us thus consider a single ball U and the discriminant family of F |U . Its restriction to E is a discriminant family
with a single singular fibre and has a local description as in Section 2 which extends for U sufficiently small. The
complement Y of the discriminant in C × U is trivializable over U in the complement of balls Bε(vj ) centered at the
roots vj on the fibre over y.

The braid monodromy of F |U and the versal braid monodromy of F |E can thus be considered as a group of
mapping classes which are supported on the intersection

⋃
j Dj of a local Milnor fibre with

⋃
j Bε(vj ).

According to the decomposition of the discriminant into connected components Dj over U , the bifurcation locus
decomposes, B = ⋃

j Bj , where each Bj is the branch locus of the finite map of Dj onto U . Since the Bε(vj ) are
disjoint, the braid monodromy transformation along a simple geometric element based at the chosen Milnor fibre and
associated to Bj can be chosen with support in Dj .

Consider first a root vj which is the value of non-degenerate critical points of the function Fy . Its local discriminant
Dj in Bε(vj ) has smooth branches in bijection to the preimages. Hence all mapping classes in the braid monodromy
of F |U restrict to mapping classes of Dj which fix the punctures pointwise.

On the other hand E′ := U ∩ {s = η} is transversal to the bifurcation set, so the divisorial discriminant components
in Bε(vj ) meet pairwise, transversally, and over distinct points of the bifurcation set Bj ∩E′. This implies that the braid



876 M. Lönne / C. R. Acad. Sci. Paris, Ser. I 346 (2008) 873–876
Fig. 2. Local Zariskifications.

monodromy of F |E′ contains all pure mapping classes of Dj , i.e. the group of mapping classes which are supported
on Dj and fix the punctures pointwise. Hence this braid monodromy contains all mapping classes we assign to vj to
get the versal braid monodromy group of F |E .

Similarly we argue in case the root vj is the value of a unique critical point cj . Then Bε(vj ) can be considered
as a discriminant family induced from the base of a versal truncated unfolding of the function at cj . It is in fact a
Zariskification, see Fig. 2, since its bifurcation set Bj is met by E in a single point only and transversally by E′.
Hence the braid monodromy of F |U contains the braid monodromy of the function at cj considered as mapping
classes on Dj extended by the identity to the Milnor fibre of F |U , which is just what we assigned to vj to get the
versal braid monodromy group. �

Note that with a straightforward generalisation of versal braid monodromy to the non-tame case this claim holds in
general. To demonstrate its power we show how our method is exploited in the case of a Brieskorn–Pham polynomial,
cf. [5]. By the following proposition the inductive regress is through Brieskorn–Pham polynomials of decreasing
codimension only which ends at polynomials of type Ak , and we may work with linear unfoldings only, considered
in [4], where explicit formulae are known for the discriminant:

Proposition 3.2. The braid monodromy group of a Brieskorn Pham singularity given by f (x) = ∑
i x

li
i is generated

by the versal braid monodromy groups of the families

fλ: x �→ f (x) − λx1 −
∑

i>1

εixi, gα||α|�1: x �→ f (x) − x1 − α
∑

i>1

εixi,

where 0 < ε2, . . . , εn 	 1 are positive real constants such that both families are tame.

[The tameness condition is open: At degenerate critical points the Hessian vanishes, which happens only for λ = 0
and α = 0. In the first case the critical points and critical values of f0 coincide with those of f0|x1=0, so they are in
bijection if the latter is a Morse function, which is an open condition. In the analogous second case it suffices to see
that g0 restricted to the x1-axis is the Morse function x

l1
1 − x1.]

Proof. By Theorem 3.1 the versal braid monodromy of the unfolding λ,α,u �→ f − λx1 − α
∑

i>1 εixi is equal to
the braid monodromy of f . So it suffices to show that Proposition 2.2 applies.

Since the bifurcation set in the λ, α parameter plane is quasi-homogeneous and contains both axes, we may deduce
by the method of Zariski and van Kampen that the fundamental group of the complement is generated by paths in a
line parallel to the λ-axis and a path which is geometric for the λ-axis. Since such paths lie in the base of the family
fλ respectively gα| we are done. �
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