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Abstract

A discontinuous Galerkin method is analyzed to approximate the nonlinear Laplacian model problem. The salient feature of the
proposed scheme is that it is endowed with a discrete variational principle. The convergence of the discrete approximations to the
exact solution is proven. To cite this article: E. Burman, A. Ern, C. R. Acad. Sci. Paris, Ser. I 346 (2008).
© 2008 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Résumé

Approximation par la méthode de Galerkine discontinue avec un principe variationnel discret pour un Laplacien non-
linéaire. On analyse une méthode de Galerkine discontinue afin d’approcher le problème modèle du Laplacien non-linéaire. La
propriété essentielle du schéma proposé est que celui-ci jouit d’un principe variationnel discret. On prouve la convergence des
approximations discrètes vers la solution exacte. Pour citer cet article : E. Burman, A. Ern, C. R. Acad. Sci. Paris, Ser. I 346
(2008).
© 2008 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

Let Ω be a open bounded connected subset of R
d whose boundary is a finite union of parts of hyperplanes. Let

1 < p < +∞. Consider the nonlinear variational problem consisting of finding the minimizer in W
1,p

0 (Ω) of the
functional

J :W 1,p

0 (Ω) � v �−→ 1

p

∫

Ω

|∇v|p −
∫

Ω

f v ∈ R, (1)

where f ∈ Lq(Ω) with q = p
p−1 and where | · | denotes the Euclidean norm in R

d . It is well-known (see, e.g., [7]

and [4, p. 312]) that the functional J admits a unique minimizer u ∈ W
1,p

0 (Ω). This minimizer solves the associated
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Euler–Lagrange optimality conditions stating that

∀v ∈ W
1,p

0 (Ω),

∫

Ω

|∇u|p−2∇u · ∇v =
∫

Ω

f v. (2)

This so-called nonlinear Laplacian is a prototype for problems encountered, for instance, with filtration models or
quasi-Newtonian flows.

The finite element approximation of the nonlinear Laplacian model problem has been considered previously by
various authors; see, e.g., [1,3] for some of the earlier works using conforming finite elements and [8] for a more
recent work using nonconforming finite elements. Discontinuous Galerkin (dG) methods have received extensive
interest over the last decade, in particular because of their flexibility in the construction of computational meshes
and the use of variable polynomial degrees. However, to the best of our knowledge, a dG method has not yet been
devised to approximate (2). The purpose of this Note is to fill this gap. A salient feature of the proposed method is
its discrete variational principle, meaning that the discrete solution minimizes over the discrete dG space a consistent
modification of the nonlinear energy functional (1). To achieve this property, we use a discrete gradient reconstruction,
which from a mathematical viewpoint, satisfies an important compactness property recently established in [5]. Such
discrete gradients arise naturally in the formulation of dG approximations and have been used recently also in [6] for
nonlinear elasticity and in [2] for nonlinear diffusion.

This Note is organized as follows. In Section 2 we formulate the dG approximation. In Section 3 we prove the
convergence of the method. The main result is Theorem 3.1.

2. Formulation of the dG approximation

The family {Th}h∈H, where H is a countable set, is said to be an admissible mesh family if the following assump-
tions are satisfied:

(i) for all h ∈ H, Th is a finite family of nonempty convex (possibly nonconvex) open disjoint sets T forming a
partition of Ω and whose boundaries are a finite union of parts of hyperplanes;

(ii) there is a parameter N∂ , independent of h, such that each T ∈ Th has at most N∂ faces, where a set F ⊂ ∂T

is said to be a face of T if F is part of a hyperplane, and if either F = ∂T ∩ ∂Ω or there is T ′ ∈ Th such that
F = ∂T ∩ ∂T ′;

(iii) there is a parameter �1 independent of h such that for all T ∈ Th,
∑

F⊂∂T hF |F | � �1|T |, where hF denotes the
diameter of the face F , |F | its (d − 1)-dimensional measure and |T | the d-dimensional measure of T ;

(iv) for all h ∈ H, each T ∈ Th is affine-equivalent to an element of a finite collection of reference elements, and there
is parameter �2, independent of h, bounding the ratio of the diameter hT of any T ∈ Th to the diameter of the
largest ball inscribed in T .

For each h ∈ H, we define size(Th)
def= maxT ∈Th

hT . The mesh parameters N∂ , �1, �2 and the reference elements
will be collectively denoted by the symbol P . The mesh faces are collected in the set Fh. It will be convenient to
partition the set Fh into F i

h ∪ F b
h where F b

h collects the faces located on the boundary of Ω and F i
h collects the

remaining ones. For F ∈ F i
h, there are T1 and T2 in Th such that F = ∂T1 ∩ ∂T2, and we define νF as the unit normal

vector to F pointing from T1 to T2. For any function ϕ such that a (possibly two-valued) trace is defined on F , let

�ϕ�
def= ϕ|T1 − ϕ|T2 and {{ϕ}} def= 1

2 (ϕ|T1 + ϕ|T2). For F ∈ F b
h , νF is defined as the unit outward normal to Ω , while the

jump and average are conventionally defined as �ϕ�
def= ϕ and {{ϕ}} def= ϕ.

Consider the finite dimensional space Vh
def= {vh ∈ L2(Ω); ∀T ∈ Th, vh|T ∈ P1(T )} spanned by piecewise affine

polynomials. This space is equipped with the norm

‖vh‖p

DG,p

def=
∑
T ∈Th

∫

T

|∇vh|p +
∑

F∈Fh

1

h
p−1
F

∫

F

∣∣�vh�
∣∣p. (3)

Discrete Sobolev embeddings that are the exact counterpart of those holding in W
1,p

0 (Ω) are proven in [5] on the

spaces Vh using the norm defined by (3) (actually, an equivalent variant using |∇vh|pp

def= ∑d
i=1 |∂ivh|p instead of
�
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|∇vh|p). Here, we shall use the fact that there is σ depending on p and P s.t.

∀vh ∈ Vh, ‖vh‖Lp(Ω) � σ‖vh‖DG,p. (4)

For all F ∈ Fh, let rF :L2(F ) → [V 0
h ]d be the lifting operator such that for all φ ∈ L2(F ), rF (φ) is defined s.t.

∀τh ∈ [V 0
h ]d ,

∫
Ω

rF (φ) · τh = ∫
F
{{τh}} · νF φ, where V 0

h denotes the space spanned by piecewise constant functions
on Th. Clearly, the support of rF (φ) consists of the one or two mesh elements of which F is a face. Then, define the
discrete gradient operator Gh :Vh → [Vh]d s.t.

Gh(vh)
def= ∇hvh −

∑
F∈Fh

rF
(

�vh�
)
, (5)

where ∇hvh denotes the usual broken gradient of vh. The following two results, proven in [5], state the key stability
and compactness properties of the discrete gradient:

Lemma 2.1 (Stability). For all vh ∈ Vh,
∥∥∇hvh − Gh(vh)

∥∥p

Lp(Ω)d
� N

p−1
∂

∑
F∈Fh

∥∥rF
(

�vh�
)∥∥p

Lp(Ω)d
, (6)

and there is c (depending on k and P ) such that for all F ∈ Fh, ‖rF (�vh�)‖p

Lp(Ω)d
� ch

1−p
F

∫
F

|�vh�|p .

Lemma 2.2 (Compactness). Let {vh}h∈H be a sequence in Vh and assume that this sequence is bounded in the
‖ · ‖DG,p-norm. Assume that size(Th) → 0. Then, there exists v ∈ W

1,p

0 (Ω) such that, up to a subsequence, vh → v in
Lp(Ω) and Gh(vh) ⇀ ∇v weakly in Lp(Ω)d .

Define the discrete functional

Jh : Vh � vh �−→ 1

p

∫

Ω

∣∣Gh(vh)
∣∣p + 1

p

∑
F∈Fh

η
1

h
p−1
F

∫

F

∣∣�vh�
∣∣p −

∫

Ω

f vh ∈ R, (7)

where η > 0 is a (user-dependent) parameter. The dG approximation uh is then defined as the minimizer over the dis-
crete space Vh of the discrete functional Jh. It is easily verified that this minimizer exists and is unique. Equivalently,
it satisfies the following Euler–Lagrange optimality conditions ah(uh, vh) = ∫

Ω
f vh, ∀vh ∈ Vh, with

ah(uh, vh) =
∫

Ω

∣∣Gh(uh)
∣∣p−2

Gh(uh) · Gh(vh) +
∑

F∈Fh

η
1

h
p−1
F

∫

F

∣∣�uh�
∣∣p−2

�uh� �vh�. (8)

The discrete Euler–Lagrange equations amount to solving a finite set of coupled nonlinear equations. It is readily
verified using Lemma 2.1 that the semi-linear form ah verifies the following coercivity property: there is α > 0,
depending on p, P and η s.t.

∀vh ∈ Vh, ah(vh, vh) � α‖vh‖p

DG,p. (9)

3. Convergence analysis

Theorem 3.1 (Convergence). Let {uh}h∈H be the sequence of approximate solutions generated by solving the discrete
problems on the admissible meshes {Th}h∈H. Then, as size(Th) → 0,

uh → u, in Lp(Ω), (10)

Gh(uh) → ∇u, in Lp(Ω)d, (11)

and
∑

F∈Fh

1
p−1

∫
F

|�uh�|p → 0, where u ∈ W
1,p

0 (Ω) is the global minimizer of the functional J in W
1,p

0 (Ω).

hF
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Proof. (i) A priori estimate. Owing to (9), the Sobolev embedding (4) and Hölder’s inequality, it is readily inferred
that

‖uh‖DG,p �
(
α−1σ‖f ‖Lq(Ω)

)1/(p−1)
.

Lemma 2.2 then implies that there exists u ∈ W
1,p

0 (Ω) such that, up to a subsequence, uh → u in Lp(Ω) and
Gh(uh) ⇀ ∇u weakly in Lp(Ω)d as size(Th) → 0.

(ii) Identification of the limit. Owing to weak convergence and convexity, lim inf
∫
Ω

|Gh(uh)|p �
∫
Ω

|∇u|p , and
since the jump term in Jh is nonnegative, this yields lim infJh(uh) � J (u). Let now ϕ ∈ C∞

c (Ω) and let πhϕ denote
the L2-orthogonal projection of ϕ onto Vh. Owing to standard approximation properties, ‖ϕ − πhϕ‖DG,p → 0 as
size(Th) → 0. Hence, by continuity, lim infJh(πhϕ) = J (ϕ). Since Jh(πhϕ) � Jh(uh) by construction, this implies
J (u) � J (ϕ), and by density of C∞

c (Ω) in W
1,p

0 (Ω), this shows that u is a minimizer of the exact problem. Since
this minimizer is unique, the whole sequence {uh}h∈H converges to u (strongly in Lp(Ω)) and the whole sequence
{Gh(uh)}h∈H converges to ∇u (weakly in Lp(Ω)d ).

(iii) Strong convergence of the gradient. Observing that

lim sup
∥∥Gh(uh)

∥∥p

Lp(Ω)d
� lim supah(uh,uh) = lim sup

∫

Ω

f uh =
∫

Ω

f u = ‖∇u‖p

Lp(Ω)d
,

this classically implies the strong convergence of the gradient. Similarly, it is inferred that ah(uh,uh) → ‖∇u‖p

Lp(Ω)d
,

so that
∑

F∈Fh

η
1

h
p−1
F

∫

F

∣∣�uh�
∣∣p = ah(uh,uh) − ∥∥Gh(uh)

∥∥p

Lp(Ω)d
,

converges to zero. The proof is complete. �
Preliminary numerical results in one space dimension indicate a convergence rate of at least h3/4 for p ∈ {3,4,5}

and smooth exact solution.
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