## Partial Differential Equations

# Analytic singularities for long range Schrödinger equations 

André Martinez ${ }^{\text {a, }, ~}$, Shu Nakamura ${ }^{\text {b }}$, Vania Sordoni ${ }^{\text {a }}$<br>${ }^{\text {a }}$ Università di Bologna, Dipartimento di Matematica, Piazza di Porta San Donato 5, 40127 Bologna, Italy<br>${ }^{\text {b }}$ Graduate School of Mathematical Science, University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo, Japan 153-8914

Received 18 June 2008; accepted 17 July 2008
Available online 8 August 2008
Presented by Jean-Michel Bony


#### Abstract

We consider the Schrödinger equation associated to long range perturbations of the flat Euclidean metric (in particular, potentials growing subquadratically at infinity are allowed). We construct a modified quantum free evolution $G_{0}(s)$ acting on Sjöstrand's spaces, and we characterize the analytic wave front set of the solution $\mathrm{e}^{-\mathrm{i} t H} u_{0}$ of the Schrödinger equation, in terms of the semiclassical exponential decay of $G_{0}\left(-t h^{-1}\right) \mathbf{T} u_{0}$, where $\mathbf{T}$ stands for the Bargmann-transform. The result is valid for $t<0$ near the forward non-trapping points, and for $t>0$ near the backward non-trapping points. To cite this article: A. Martinez et al., C. $\boldsymbol{R}$. Acad. Sci. Paris, Ser. I 346 (2008). © 2008 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.


## Résumé

Singularités analytiques pour des équations de Schrödinger à longue portée. On considère l'équation de Schrödinger associée à des perturbations à longue portée de la métrique euclidienne plate (en particulier, on autorise des potentiels qui croissent de manière sub-quadratique à l'infini). On construit une évolution quantique modifiée $G_{0}(s)$ agissant sur des espaces de Sjöstrand, et on caractérise le front d'onde analytique de la solution $\mathrm{e}^{-\mathrm{i} t} H^{\prime} u_{0}$ de l'équation de Schrödinger en termes de décroissance exponentielle semiclassique de $G_{0}\left(-t h^{-1}\right) \mathbf{T} u_{0}$, où $\mathbf{T}$ désigne la tranformation de Bargmann. Le résultat est valable pour $t<0$ près des points non captifs dans l'avenir, et pour $t>0$ près des points non captifs dans le passé. Pour citer cet article: A. Martinez et al., C. R. Acad. Sci. Paris, Ser. I 346 (2008).
© 2008 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

## 1. Notations and main result

We are concerned with the analytic wave front set of the solution $u=\mathrm{e}^{-\mathrm{i} t H} u_{0}$ of the Schrödinger equation,
(Sch): $\left\{\begin{array}{l}\mathrm{i} \frac{\partial u}{\partial t}=H u ; \\ u_{\mid t=0}=u_{0},\end{array}\right.$

[^0]with $u_{0} \in L^{2}\left(\mathbb{R}^{n}\right)$, and $H$ of the form,
$$
H=\frac{1}{2} \sum_{j, k=1}^{n} D_{j} a_{j, k}(x) D_{k}+\frac{1}{2} \sum_{j=1}^{n}\left(a_{j}(x) D_{j}+D_{j} a_{j}(x)\right)+a_{0}(x)
$$
where $D_{j}=-\mathrm{i} \partial_{x_{j}}$, and the coefficients $a_{\alpha}(x)$ satisfy to the following assumptions. For $v>0$ we denote
$$
\Gamma_{\nu}=\left\{z \in \mathbb{C}^{n}| | \operatorname{Im} z \mid<\nu\langle\operatorname{Re} z\rangle\right\}
$$

Assumption A. For each $\alpha, a_{\alpha}(x) \in C^{\infty}\left(\mathbb{R}^{n}\right)$ is real-valued and can be extended to a holomorphic function on $\Gamma_{\nu}$ with some $v>0$. Moreover, for $x \in \mathbb{R}^{n}$, the matrix $\left(a_{j, k}(x)\right)_{1 \leqslant j, k \leqslant n}$ is symmetric and positive definite, and there exists $\sigma \in(0,1]$ such that,

$$
\begin{aligned}
& \left|a_{j, k}(x)-\delta_{j, k}\right| \leqslant C_{0}\langle x\rangle^{-\sigma}, \quad j, k=1, \ldots, n, \\
& \left|a_{j}(x)\right| \leqslant C_{0}\langle x\rangle^{1-\sigma}, \quad j=1, \ldots, n, \\
& \left|a_{0}(x)\right| \leqslant C_{0}\langle x\rangle^{2-\sigma}
\end{aligned}
$$

for $x \in \Gamma_{\nu}$ and with some constant $C_{0}>0$.
In particular, $H$ is essentially selfadjoint on $C_{0}^{\infty}\left(\mathbb{R}^{n}\right)$, and we use the same letter $H$ for its unique selfadjoint extension on $L^{2}\left(\mathbb{R}^{n}\right)$.

We denote by $p(x, \xi):=\frac{1}{2} \sum_{j, k=1}^{n} a_{j, k}(x) \xi_{j} \xi_{k}$ the principal symbol of $H$, and by $H_{0}:=-\frac{1}{2} \Delta$ the free Laplace operator. For any $(x, \xi) \in \mathbb{R}^{2 n}$, we also denote by $(y(t ; x, \xi), \eta(t ; x, \xi))=\exp t H_{p}(x, \xi)$ the Hamilton flow associated with $p$, and we say that a point $\left(x_{0}, \xi_{0}\right) \in T^{*} \mathbb{R}^{n} \backslash 0$ is forward non-trapping when $\left|y\left(t, x_{0}, \xi_{0}\right)\right| \rightarrow \infty$ as $t \rightarrow+\infty$. In that case, there exists $\xi_{+}\left(x_{0}, \xi_{0}\right) \in \mathbb{R}^{n}$, such that,

$$
\left|\xi_{+}\left(x_{0}, \xi_{0}\right)-\eta\left(t, x_{0}, \xi_{0}\right)\right| \rightarrow 0 \quad \text { as } t \rightarrow+\infty
$$

We also introduce the Bargmann-FBI transform $\mathbf{T}$ defined by,

$$
\mathbf{T} u(z, h)=\int \mathrm{e}^{-(z-y)^{2} / 2 h} u(y) \mathrm{d} y
$$

(where $z \in \mathbb{C}^{n}$ and $h>0$ is a small extra-parameter), and we recall from [12] that a point $(x, \xi) \in T^{*} \mathbb{R}^{n} \backslash 0$ is not in $W F_{a}(u)$ if and only if there exists some $\delta>0$ such that $\mathbf{T} u=\mathcal{O}\left(\mathrm{e}^{\left(\Phi_{0}(z)-\delta\right) / h}\right)$ uniformly for $z$ close enough to $x-i \xi$ and $h>0$ small enough, where $\Phi_{0}(z):=(\operatorname{Im} z)^{2} / 2$ (see also [2]). In this case, we will write: $\mathbf{T} u \sim 0$ in $H_{\Phi_{0}, x-i \xi}$.

Finally, we set,

$$
q(x, \xi ; h):=\frac{1}{2} \sum_{j, k=1}^{n} a_{j, k}(x) \xi_{j} \xi_{k}+h \sum_{j=1}^{n} a_{j}(x) \xi_{j}+h^{2} a_{0}(x),
$$

and we denote by $(\tilde{x}(t, x, \xi ; h), \tilde{\xi}(t, x, \xi ; h)):=\exp t H_{q}(x, \xi)$ its Hamilton flow.
Our main result is:
Theorem 1.1. Suppose Assumption A. Then, for any $\delta_{0}>0$, there exists an $h$-dependent analytic function $W_{h}=$ $W_{h}(s, \xi)$ on $[0,+\infty) \times\left\{|\xi|>\delta_{0}\right\}$ solution of,

$$
\begin{equation*}
\frac{\partial W_{h}}{\partial s}=q\left(\partial_{\xi} W_{h}, \xi ; h\right) \tag{1}
\end{equation*}
$$

and such that, if one sets $\widetilde{W}_{h}:=W_{h}-W_{\left.h\right|_{s=0}}$, then, for any forward non-trapping point $\left(x_{0}, \xi_{0}\right)$ with $\left|\xi_{+}\left(x_{0}, \xi_{0}\right)\right|>\delta_{0}$, and for all $T>0$, the quantity

$$
\begin{equation*}
\tilde{x}\left(T / h, x_{0}, \xi_{0}\right)-\partial_{\xi} \widetilde{W}_{h}\left(T / h, \tilde{\xi}\left(T / h, x_{0}, \xi_{0}\right) ; h\right) \tag{2}
\end{equation*}
$$

admits a limit $x_{+}\left(x_{0}, \xi_{0}\right)$ independent of $T$ as $h \rightarrow 0_{+}$. Moreover, for any $t<0$ and any $u_{0} \in L^{2}\left(\mathbb{R}^{n}\right)$, one has the equivalence,

$$
\left(x_{0}, \xi_{0}\right) \notin W F_{a}\left(\mathrm{e}^{-\mathrm{i} t H} u_{0}\right) \quad \Longleftrightarrow \quad \mathrm{e}^{\mathrm{i} \widetilde{W}_{h}\left(-t h^{-1}, h D_{z}\right) / h} \mathbf{T} u_{0} \sim 0 \quad \text { in } H_{\Phi_{0}, z_{+}\left(x_{0}, \xi_{0}\right)}
$$

where $z_{+}\left(x_{0}, \xi_{0}\right):=x_{+}\left(x_{0}, \xi_{0}\right)-i \xi_{+}\left(x_{0}, \xi_{0}\right)$.
Remark 1.2. Since $W F_{a}(u)$ is conical with respect to $\xi$ and $\xi_{+}\left(x_{0}, \lambda \xi_{0}\right)=\lambda \xi_{+}\left(x_{0}, \xi_{0}\right)$ for all $\lambda>0$, the condition $\left|\xi_{+}\left(x_{0}, \xi_{0}\right)\right|>\delta_{0}$ is not restrictive.

Remark 1.3. The operator $\mathrm{e}^{\mathrm{i} \widetilde{W}_{h}\left(-t h^{-1}, h D_{z}\right) / h}$ appearing in the statement is not defined by the Spectral Theorem, but rather as a Fourier integral operator acting on Sjöstrand's spaces.

Remark 1.4. Actually, Eq. (1) needs not be satisfied by $W_{h}$, and the result remains valid with any $W_{h}$ such that (2) admits a limit, and $\frac{\partial W_{h}}{\partial s}-q\left(\partial_{\xi} W_{h}, \xi ; h\right)=\mathcal{O}\left(\langle s\rangle^{-1-\sigma}\right)$ uniformly for $s=\mathcal{O}\left(h^{-1}\right), h \rightarrow 0_{+}$.

Remark 1.5. In the short-range case $\sigma>1$, one can actually take $W(s, \xi)=s \xi^{2} / 2$, so that $\mathrm{e}^{\mathrm{i} W\left(-t h^{-1}, h D_{z}\right) / h}$ just becomes $\mathrm{e}^{-\mathrm{i} t D_{z}^{2} / 2}$, and the function $\mathrm{e}^{\mathrm{i} W\left(-t h^{-1}, h D_{z}\right) / h} \mathbf{T} u_{0}$ coincides with $\mathbf{T}\left(\mathrm{e}^{-\mathrm{i} t H_{0}} u_{0}\right)$. Thus, in that case, one recovers the result of [4].

Remark 1.6. Of course, there is a similar result for $\left(x_{0}, \xi_{0}\right)$ backward non-trapping and $t>0$.
Remark 1.7. Our result is an extension to the analytic category of those of [8], and, as for [3,4], it has been mainly motivated by a whole series of results, both in the $C^{\infty}$ and in the analytic categories, obtained during these very last few years [1,6-11,13]. A much longer list of references on this problem, with results going back to the 80's, can be found in [3], and the details of the proof can be found in [5].

## 2. Sketch of proof

### 2.1. Preliminaries

Replacing $u_{0}$ by $\mathrm{e}^{\mathrm{i} t H} u_{0}$ and changing $t$ to $-t$, we can reformulate the result as follows: For any $t>0$, one has the equivalence,

$$
\left(x_{0}, \xi_{0}\right) \notin W F_{a}\left(u_{0}\right) \quad \Longleftrightarrow \quad \mathrm{e}^{\mathrm{i} \tilde{W}\left(t h^{-1}, h D_{z}\right) / h} \mathbf{T}\left(\mathrm{e}^{-\mathrm{i} t H} u_{0}\right) \sim 0 \quad \text { in } H_{\Phi_{0}, z_{+}\left(x_{0}, \xi_{0}\right)}
$$

Changing the time scale, we set $\tilde{v}(s):=\mathbf{T e}^{-\mathrm{i} h s H} u_{0}$, and, by a standard result of Sjöstrand's theory (see [12] Proposition 7.4 and [4] Section 4), we see that $\tilde{v}(s)$ is solution of,

$$
\begin{equation*}
\mathrm{i} h \frac{\partial \tilde{v}}{\partial s} \sim \tilde{Q} \tilde{v}(s) \quad \text { in } H_{\Phi_{0}}^{\mathrm{loc}} \tag{3}
\end{equation*}
$$

where $\widetilde{Q}$ is an analytic pseudodifferential operator in the sense of [12], with symbol $\tilde{q}$ verifying,

$$
\tilde{q}(z, \zeta ; h)=q(z+\mathrm{i} \zeta, \zeta ; h)+\mathcal{O}\left(h\langle z\rangle^{-1-\sigma}+h^{2}\langle z\rangle^{-\sigma}+h^{3}\langle z\rangle^{1-\sigma}\right)
$$

uniformly as $|\operatorname{Re} z| \rightarrow \infty, h \rightarrow 0_{+},|\operatorname{Im} z|+|\zeta|=\mathcal{O}(1)$.

### 2.2. The modified free evolution

At first, we choose $R \geqslant 1$ sufficiently large in order to make the map,

$$
J_{s}: \xi \mapsto \tilde{\xi}(s, R \xi /|\xi|, \xi ; h)
$$

a global diffeomorphism from $\{|\xi|>\delta\}$ to its image, with $\delta>0$ such that $J_{S}(|\xi|>\delta) \supset\left\{|\xi|>\delta_{0}\right\}$. Then, we define the function $W_{h}$ by the formula,

$$
W_{h}(s, \xi):=R|\xi|+\int_{0}^{s} q\left(\tilde{x}\left(s, R \xi /|\xi|, J_{s}^{-1}(\xi)\right), \xi ; h\right) \mathrm{d} s^{\prime}
$$

and, by standard Hamilton-Jacobi theory, we see that $W_{h}$ solves (1), and that one has $\partial_{\xi} W_{h}(s, \xi)=\tilde{x}(s, R \xi /|\xi|$, $J_{s}^{-1}(\xi)$ ). Using arguments taken from [8], we also see that the quantity (2) admits a limit $x_{+}\left(x_{0}, \xi_{0}\right)$ independent of $T$ as $h \rightarrow 0_{+}$.

Finally, the Fourier integral operator $\mathrm{e}^{\mathrm{i} \widetilde{W}_{h}\left(s, h D_{z}\right) / h}$ is defined by

$$
\begin{equation*}
\mathrm{e}^{\mathrm{i} \widetilde{W}_{h}\left(s, h D_{z}\right) / h} v(z ; h):=\frac{1}{(2 \pi h)^{n}} \int_{\gamma(s, z)} \mathrm{e}^{\mathrm{i}(z-y) \eta / h+\mathrm{i} \widetilde{W}_{h}(s, \eta) / h} v(y) \mathrm{d} y \mathrm{~d} \eta, \tag{4}
\end{equation*}
$$

where $\gamma(s, z)$ is a convenient contour of $\mathbb{C}^{2 n}$ (it is a good contour in the sense of [12], with some uniformity as $s \rightarrow+\infty)$.

### 2.3. Completion of the proof

Conjugating the equation with $\mathrm{e}^{\mathrm{i} \widetilde{W}_{h}\left(s, h D_{z}\right) / h}$, we obtain the new equation,

$$
\mathrm{i} h \partial_{s} w(s)=L(s) w(s)
$$

where $w(s):=\mathrm{e}^{\mathrm{i} \widetilde{W}_{h}\left(s, h D_{z}\right) / h} \tilde{v}(s)$, and the symbol of the analytic pseudodifferential operator $L(s)$ verifies,

$$
\ell(s, z, \zeta ; h)=q\left(z+\mathrm{i} \zeta+\partial_{\zeta} \widetilde{W}_{h}(s, \zeta), \zeta ; h\right)-\left(\partial_{s} W_{h}\right)(s, \zeta)+\mathcal{O}\left(h\langle s\rangle^{-1-\sigma}\right)
$$

locally uniformly in $(z, \zeta)$, and uniformly for $s \in[0, T / h]$ with $T>0$ fixed. In particular, using (1), we see that $\ell=\mathcal{O}\left(\langle s\rangle^{-1-\sigma}\right)$, and $\ell=\ell_{0}(z+i \zeta, \zeta ; h)+\mathcal{O}\left(h\langle s\rangle^{-1-\sigma}\right)$, where the Hamilton flow $R_{s}$ of $\ell_{0}$ is given by,

$$
R_{s}(x, \xi ; h):=\left(\tilde{x}(s, x, \xi ; h)-\partial_{\xi} \tilde{W}(s, \tilde{\xi}(s, x, \xi ; h)), \tilde{\xi}(x, x, \xi ; h)\right) .
$$

Therefore, we are reduced to a short range situation, where the arguments of [4] can be performed and permit to conclude.

## References

[1] A. Hassel, J. Wunsch, The Schrödinger propagator for scattering metrics, Ann. of Math. (2) 162 (1) (2005) 487-523.
[2] A. Martinez, An Introduction to Semiclassical and Microlocal Analysis, UTX Series, Springer-Verlag, New York, 2002.
[3] A. Martinez, S. Nakamura, V. Sordoni, Analytic smoothing effect for the Schrödinger equation with long-range perturbation, Comm. Pure Appl. Math. 59 (2006) 1330-1351.
[4] A. Martinez, S. Nakamura, V. Sordoni, Analytic wave front set for solutions to Schrödinger equations, Preprint, 2007.
[5] A. Martinez, S., Nakamura, V. Sordoni, Analytic wave front set for solutions to Schrödinger equations II - long range perturbations, Preprint, 2008.
[6] S. Nakamura, Propagation of the homogeneous wave front set for Schrödinger equations, Duke Math. J. 126 (2005) $349-367$.
[7] S. Nakamura, Wave front set for solutions to Schrödinger equations, Preprint, 2004, J. Funct. Anal., in press.
[8] S. Nakamura, Semiclassical singularities propagation properties for the Schrödinger equations, Preprint, 2006, J. Math. Soc. Japan, in press.
[9] L. Robbiano, C. Zuily, Microlocal analytic smoothing effect for Schrödinger equation, Duke Math. J. 100 (1999) 93-129.
[10] L. Robbiano, C. Zuily, Effet régularisant microlocal analytique pour l'équation de Schrödinger: le cas des données oscillantes, Comm. Partial Differential Equations 100 (2000) 1891-1906.
[11] L. Robbiano, C. Zuily, Analytic theory for the quadratic scattering wave front set and application to the Schrödinger equation, Astérisque 283 (2002) 1-128.
[12] J. Sjöstrand, Singularités analytiques microlocales, Astérisque 95 (1982) 1-166.
[13] J. Wunsch, Propagation of singularities and growth for Schrödinger operators, Duke Math. J. 98 (1999) 137-186.


[^0]:    E-mail addresses: martinez@dm.unibo.it (A. Martinez), shu@ms.u-tokyo.ac.jp (S. Nakamura), sordoni@dm.unibo.it (V. Sordoni).
    ${ }^{1}$ Partly supported by Università di Bologna, Funds for Selected Research Topics and Founds for Agreements with Foreign Universities.

