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Abstract

We study the smallest singular value of a square random matrix with i.i.d. columns drawn from an isotropic symmetric log-
concave distribution. We prove a deviation inequality in terms of the isotropic constant of the distribution. To cite this article:
R. Adamczak et al., C. R. Acad. Sci. Paris, Ser. I 346 (2008).
© 2008 Published by Elsevier Masson SAS on behalf of Académie des sciences.

Résumé

Sur la plus petite valeur singulière de matrices aléatoires avec des colonnes indépendantes. On étudie la plus petite valeur
singulière d’une matrice carrée aléatoire dont les colonnes sont des vecteurs aléatoires i.i.d. suivant une loi à densité log-concave
isotrope. On démontre une inégalité de déviation en fonction de la constante d’isotropie. Pour citer cet article : R. Adamczak et
al., C. R. Acad. Sci. Paris, Ser. I 346 (2008).
© 2008 Published by Elsevier Masson SAS on behalf of Académie des sciences.

The behaviour of the smallest singular value of random matrices with i.i.d. random entries attracted a lot of attention
over the years. Major results were recently obtained in [5,8–10]. In asymptotic geometry one is interested in sampling
vectors uniformly distributed in a convex body. In particular the entries are not necessarily independent. In this note,
we study the more general case when the columns are i.i.d. random vectors with a symmetric isotropic log-concave
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distribution. We prove a deviation inequality for the smallest singular value in terms of a parameter Lμ which, in the
case of sampling from a convex body, corresponds to the isotropic constant of the body.

Recall that a non-negative function f on R
n is called log-concave if for all x, y ∈ R

n and all θ ∈ (0,1),
f ((1 − θ)x + θy) � f (x)1−θf (y)θ . In this paper a symmetric probability measure μ on R

n is said to be log-concave
if its density f is symmetric log-concave and it is called isotropic if its covariance matrix is the identity. We will also
set Lμ = f (0)1/n. Let us observe that if μ is an isotropic probability measure uniformly distributed on a symmetric
convex body K then Lμ is the so-called isotropic constant of K . If X is a random vector, distributed according to μ,
we will also write LX = Lμ.

We shall use the notation | · | to denote the Euclidean norm of a vector or the volume or the cardinality of a set.

Theorem 1. Let n � 1 and let Γ be an n × n matrix with independent columns drawn from an isotropic symmetric
log-concave probability μ. For every ε ∈ (0,1) and all δ ∈ (0,1) and all M � 1 we have

P

(
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x∈Sn−1
|Γ x| � ε

(
c1

MLμ

)1/(1−δ)

n−1/2
)

� Cε

δ
+ e−c2n + P

(‖Γ ‖ > M
√

n
)
, (1)

where c1, c2 > 0 and C are absolute constants. Moreover, if δ � 1 − 1/(2n), then

P

(
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x∈Sn−1
|Γ x| � ε

(
c1

MLμ

)1/(1−δ)

n−1/2
)

� Cε1/2

δ
+ P

(‖Γ ‖ > M
√

n
)
. (2)

Estimates for P(‖Γ ‖ > M
√

n), when M is a power of logn, can be deduced from [6] and [3].
An important case when we have more information (that follows from a result of Aubrun [1]) is that of

1-unconditional measures. Recall that a probability measure with density f is 1-unconditional if for any x =
(x1, . . . , xn) ∈ R

n and any (ε1, . . . , εn) ∈ {−1,1}n, f (x1, . . . , xn) = f (ε1x1, . . . , εnxn).

Corollary 2. If a probability μ is 1-unconditional, then Γ satisfies

P

(
inf

x∈Sn−1
|Γ x| � εn−1/2

)
� Cε + 2e−cn1/5

,

where C and c > 0 are absolute constants. Moreover, for all ε ∈ (0,1) we have

P

(
inf

x∈Sn−1
|Γ x| � εn−1/2

)
� Cεcn1/5/(2(cn1/5+1)).

The proof of the theorem requires the study of the isotropic constant of a sum of i.i.d. random vectors in R
n. Let

X1, . . . ,Xn be independent isotropic log-concave symmetric random vectors in R
n. Let x ∈ Sn−1, and set

Z = x1X1 + · · · + xnXn.

Then it is well known that Z is also an isotropic log-concave symmetric random vector in R
n. If X1, . . . ,Xn are

1-unconditional, then so is Z. The following theorem is of independent interest.

Theorem 3. Let X1, . . . ,Xn be i.i.d. random vectors in R
n, distributed according to a symmetric isotropic log-concave

probability μ, let x ∈ Sn−1 and Z = x1X1 + · · · + xnXn. Then LZ � CLμ, where C is a universal constant.

The proof is based on the following version of a result by Gluskin and Milman [2]. Recall that K is called a star
body whenever tK ⊂ K for all 0 � t � 1, and in such a case ‖ · ‖K denotes its Minkowski functional.

Lemma 4. Let f1, . . . , fm be densities of probability measures on R
n and let K ⊂ R

n be a star body containing the
origin in its interior. Then for all λ1, . . . , λm we have( ∫

Rn

. . .

∫
Rn

∥∥∥∥∥
m∑

i=1

λixi

∥∥∥∥∥
2

K

m∏
i=1

f (xi)dxi

)1/2

� c|K|−1/n

(
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λ2
i r

2
i

)1/2

, (3)

where r2 = ∫ ∞ |{x: fi(x) � t}|1+2/n dt � ‖fi‖−2/n∞ and c > 0 is an absolute constant.
i 0
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Proof of Theorem 3. Let f be the density of μ and let g be the density of Z. By Lemma 2 in [4] there exists a
star-shaped body K ⊂ R

n, with 0 in its interior such that

g(0)1/n|K|1/n

( ∫
Rn

‖x‖2
Kg(x)dx

)1/2

� C,

for a certain universal constant C. On the other hand, by Lemma 4 we have( ∫
Rn

‖x‖2
Kg(x)dx

)1/2

= (
E‖Z‖2

K

)1/2 = (
E‖x1X1 + · · · + xnXn‖2

K

)1/2

� c

|K|1/nf (0)1/n
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x2
i

)1/2
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|K|1/nf (0)1/n
.

Putting these two inequalities together concludes the proof. �
We pass now directly to the proof of Theorem 1 and we assume that Γ and μ satisfy the assumptions described

there. Similarly as in [5,8,9], the argument relies on splitting the sphere Sn−1 into several regions. We use the following
notation from [9]:

Sparse = Sparse(δ) = {
x ∈ R

n:
∣∣supp(x)

∣∣ � δn
}
,

Comp = Comp(δ, ρ) = {
x ∈ Sn−1: dist

(
x,Sparse(δ)

)
� ρ

}
,

Incomp = Incomp(δ, ρ) = Sn−1\Comp(δ, ρ).

Proposition 5. For all ρ, δ, ε ∈ (0,1) we have

P

(
inf

x∈Incomp(δ,ρ)
|Γ x| � ρεn−1/2

)
� C

δ
ε,

where C is an absolute constant.

The proof of this proposition uses Lemma 3.5 of [9] which reduces the required estimate to an estimate of prob-
ability of the form PXk

(|〈X∗
k ,Xk〉| < ε), for a fixed 1 � k � n, where X∗

k is a random vector of norm 1 independent
of Xk . For each fixed value of X∗

k , 〈X∗
k ,Xk〉 is a one-dimensional isotropic log-concave and symmetric random vari-

able and therefore the latter probability can be bounded above by Cε, where C is a universal constant. The proof is
then finished by Lemma 3.5 of [9].

Proposition 6. Let Γ be an n × n random matrix with independent columns X1, . . . ,Xn, distributed according to a
symmetric isotropic log-concave probability μ. Then, for any M > 1 and δ,ρ ∈ (0,1), we have

P

(
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x∈Comp(δ,ρ/(2M))
|Γ x| � ρ

√
n&‖Γ ‖ � M

√
n
)

� CnLn
μMδnρ(1−δ)n,

where C is an absolute constant. In particular, there exist constants c1, c2 > 0 such that for every M > 1 and
δ,ρ ∈ (0,1), satisfying

ρ �
(

c1

MδLμ

)1/(1−δ)

we have
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It is easy to see that for every fixed x ∈ Sn−1, letting Z = Γ x, we get

P
(|Z| � ρ

√
n
)
� CnLn

Zρn,
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where C is an absolute constant. Then the proof of Proposition 6 uses Theorem 3 and an ε-net argument. More
sophisticated estimates for a small ball probability for random vectors distributed according to a symmetric isotropic
log-concave measure were recently proved by Paouris [7].

Proof of Theorem 1. For a fixed δ ∈ (0,1) and M � 1, we apply Proposition 6 with

ρ =
(

c1

MδLμ

)1/(1−δ)

and get
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Since
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we also have

P

(
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Now, Proposition 5 applied with ρ/2M instead of ρ and 2ε instead of ε gives

P

(
inf

x∈Incomp(δ,ρ/(2M))
|Γ x| � ε

(
c1

MLμ

)1/(1−δ)

n−1/2
)

� Cε

δ
.

The last two inequalities combined with the fact that Sn−1 = Incomp(δ, ρ/(2M)) ∪ Comp(δ, ρ/(2M)) and union
bound allow us to conclude (1).

The proof of the “moreover part” is similar. We omit further details. �
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