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Abstract

This Note proves the convergence of the finite volume MultiPoint Flux Approximation (MPFA) O scheme for anisotropic and
heterogeneous diffusion problems. Its main originality is that our framework and proof deal with general polygonal and polyhedral
meshes as well as with L∞ diffusion coefficients, which is essential in practical applications. To cite this article: L. Agelas,
R. Masson, C. R. Acad. Sci. Paris, Ser. I 346 (2008).
© 2008 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Résumé

Convergence du schéma volume fini multi-point de type “O” pour les problèmes de diffusion hétérogène anisotrope sur
maillages généraux. Cette Note démontre la convergence du schéma volume fini de type « O » pour les problèmes de diffusion
en milieu hétérogène anisotrope. Sa principale originalité est de traiter des maillages polygonaux et polyédriques généraux ainsi
que des coefficients de diffusion L∞, ce qui est essentiel dans les applications. Pour citer cet article : L. Agelas, R. Masson, C. R.
Acad. Sci. Paris, Ser. I 346 (2008).
© 2008 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Version française abrégée

Les schémas MPFA de type O (voir [1,6]) sont très utilisés dans l’approximation des flux de Darcy des modèles
d’écoulements polyphasiques en milieux poreux car ce sont des schémas volume fini centrés adaptés aux milieux
anisotropes et hétérogènes et aux maillages polyédriques généraux. Leur construction repose sur des variables inter-
médiaires de sous face us

σ autour de chaque sommet s et pour chaque face σ, s ∈ σ . Ces variables servent à construire
un gradient discret consistant (∇Du)sK dans chaque maille K autour du sommet s où u est le vecteur de l’ensemble
des inconnues de sous faces us

σ et de mailles uK . Les inconnues de sous faces sont ensuite éliminées localement
par la conservation des flux sur chaque sous face autour du sommet s. Nous introduisons dans cet article la forme
variationnelle discrète non symétrique aD (3) basée sur le gradient discret consistant (∇Du)sK et le gradient faible
(∇̃Du)sK ainsi que les termes de stabilisation consistants Rs

K,σ (u). On montre que la formulation variationnelle hy-
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bride associée est équivalente au schéma volume fini hybride (3) et qu’elle généralise le schéma en O. Les inconnues
de sous faces sont éliminées par la conservation (4) des flux aux sous faces autour de chaque sommet s. Moyennant
une hypothèse suffisante et locale de coercivité (5) de la forme variationnelle aD , on montre que le schéma volume
fini introduit est bien posé et converge dans L2 vers la solution faible du problème (1) pour des tenseurs de diffusion
dans L∞. On montre de plus la convergence dans L2 du gradient discret vers le gradient de la solution faible (voir le
théorème 4.1). Les résultats numériques présentés illustrent comme prédit par l’analyse que le schéma est convergent
lorsque la déformation du maillage ou l’anisotropie n’est pas trop forte. Dans le cas contraire, le schéma perd ses
propriétés de coercivité et de convergence.

1. Introduction

Let Ω be an open bounded connected polygonal subset of R
d , with d ∈ N

�, and ∂Ω = Ω \ Ω its boundary. In this
Note, we consider the elliptic equation on the domain Ω{

div(−Λ∇u) = f in Ω,

u = 0 on ∂Ω,
(1)

with the following hypotheses on the data: f ∈ L2(Ω), Λ is in L∞(Ω, Md) where Md is the set of d × d symmetric
matrices, and there exist 0 < α0 � β0, such that Sp(Λ(x)) ∈ [α0, β0] for all x ∈ Ω where Sp(M) stands for the
spectrum of the symmetric square matrix M .

The MultiPoint Flux Approximation (MPFA) O method is a widely used cell centered finite volume scheme in the
oil industry for the discretization of diffusion fluxes in multiphase Darcy porous media flow. The main advantages of
this scheme are to provide linear formulae for the fluxes at each face of the mesh in terms of the neighbouring cell
unknowns, and to reproduce locally linear solutions on general unstructured meshes. In addition, the MPFA O scheme
is adapted to discontinuous, anisotropic diffusion coefficients in the sense that it reproduces cellwise linear solutions
for cellwise constant diffusion tensors.

Its construction uses in addition to the cell unknowns uK for each cell K of the mesh, the intermediate unknowns us
σ

for each face (edge in 2D) σ of the mesh and each vertex s of the face σ . Roughly speaking, assuming that each vertex s

of any cell K is shared by exactly d faces σ of the cell K , subfluxes F s
K,σ are built using a cellwise constant diffusion

coefficient and a linear approximation of u on the cell K using the cell unknown uK and the d face unknowns us
σ .

Then, the intermediate unknowns are eliminated by the flux continuity equations on each face around the vertex s,
and the approximate flux FK,σ is the sum of the subfluxes over the vertices of the face σ . A generalization of this
construction is proposed in [9] and [4] for general polyhedral meshes.

Recent papers have studied the convergence of the MPFA O scheme but there is yet no convergence result on
general polygonal and polyhedral meshes, and none taking into account discontinuous diffusion coefficients which
are essential in oil industry applications. In [11,2,10] the convergence of the scheme is obtained on quadrilateral
meshes. The proofs are based on equivalences of the MPFA O scheme to mixed finite element methods using specific
quadrature rules. To our knowledge, these equivalences do not carry over to general polyhedral meshes in 2D and 3D.
In [13] a mimetic finite difference scheme is introduced which is equivalent to the MPFA O scheme for simplicial
and parallepipedic cells providing a convergence result for such meshes. This mimetic finite difference scheme is
very similar to the schemes proposed in [12] and [5] in 2D. These last three schemes are unconditionally symmetric
and coercive but they are not consistent on general polygonal and polyhedral meshes and they have been shown
numerically to be non convergent on randomly refined quadrangular grids.

In this paper an hybrid discrete variational formulation is introduced in Section 3 using the framework described
in [7,8]. For usual meshes such that each vertex of any cell K is shared by exactly d faces of the cell K , our discrete
variational formulation is equivalent to the usual MPFA O scheme, provided that the normal vectors to the d faces of
each cell K sharing a vertex s of K span R

d . It will in addition provide a generalization of the O scheme on more
general polyhedral meshes, alternative to the one described in [9].

In Section 4, a sufficient local condition for the coercivity of the scheme is derived which will yield existence, and
uniqueness of the solution. Under this coercivity condition, the convergence of the scheme including the case of L∞
diffusion coefficients can be proved.

In the following, the weak solution of (1) will be denoted by ū, and λmin(M) denotes the smallest eigenvalue of a
given symmetric square matrix M .
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Fig. 1. Example of an admissible mesh in the sense of Definition 2.1 for d = 2 (left) and examples of notations for the cell K (right). On the
left figure, one has for instance Vσ1 = {s1, s2}, VK = {s1, s2, s3, s4}, Es1 = {σ1, σ4, σ5}, EK = {σ1, σ2, σ3, σ4}, Ts1 = {K,L,M}, Tσ1 = {K,L},
Tσ2 = {K}.

2. Discrete functional framework

Definition 2.1. An admissible finite volume discretization of Ω , denoted by D, is given by D = (T , E , P , V ), where:

– T is a finite family of non empty connected open disjoint subsets of Ω (the “cells”) such that Ω = ⋃
K∈T K . For

any K ∈ T , let ∂K = K \ K be the boundary of K and mK > 0 denote the measure of K .
– E is a finite family of disjoint subsets of Ω (the “faces” of the mesh), such that, for all σ ∈ E , σ is a non empty

closed subset of a hyperplane of R
d , which has a (d − 1)-dimensional measure mσ > 0. We assume that, for all

K ∈ T , there exists a subset EK of E such that ∂K = ⋃
σ∈EK

σ . We then denote by Tσ the set {K ∈ T | σ ∈ EK }.
It is assumed that, for all σ ∈ E , either Tσ has exactly one element and then σ ⊂ ∂Ω (boundary face) or Tσ has
exactly two elements (interior face). For all σ ∈ E , we denote by xσ the center of gravity of σ .

– P is a family of points of Ω indexed by T (“the centers of cells”), denoted by P = (xK)K∈T , such that xK ∈ K

and K is star-shaped with respect to xK .
– V is a family of points (“the vertices of the mesh”), such that for any K ∈ T , for all subset HK of EK with

cardinal(HK) � d , then
⋂

σ∈HK
σ = ∅ or

⋂
σ∈HK

σ = s where s ∈ V . For all s ∈ V , we denote by Es the set

{σ ∈ E | s ∈ σ } and by Ts the set {K ∈ T | s ∈ K}. For all K ∈ T , the set VK stands for {s ∈ V | s ∈ K}, and for
all σ ∈ E the set {s ∈ V | s ∈ σ } is denoted by Vσ .

Fig. 1 gives an example of a 2D admissible mesh and illustrate some of the above and following notations. The size
of the discretization is defined by: hD = sup{diam(K),K ∈ T }. For all K ∈ T and σ ∈ EK , we denote by nK,σ the
unit vector normal to σ outward to K , and by dK,σ the Euclidean distance between xK and σ . The set of interior (resp.
boundary) faces is denoted by Eint (resp. Eext), defined by Eint = {σ ∈ E | σ �⊂ ∂Ω} (resp. Eext = {σ ∈ E | σ ⊂ ∂Ω}).
For any K ∈ T and s ∈ VK , qs

K stands for the cardinal of EK ∩ Es .

Shape regularity of the mesh. It will be measured by the parameters regul(D) and ratio(D) defined by
minσ∈EK,K∈T { dK,σ

diam(K)
} and minσ∈Eint,Tσ ={K,L}{ min(dK,σ ,dL,σ )

max(dK,σ ,dL,σ )
}.

Parameters of the MPFA O finite volume scheme. In addition to the choice of the cell centers satisfying the above
assumptions, the construction of the MPFA O scheme involves two families of parameters defined on the set {(σ, s) |
s ∈ Vσ , σ ∈ E }. The first family of non negative reals (ms

σ )s∈Vσ ,σ∈E defines the distribution of the “area” mσ of each
face σ to the face vertices s ∈ Vσ such that mσ = ∑

s∈Vσ
ms

σ .
It results that the volume of each cell K ∈ T is also distributed to the vertices of the cell according to the subvolumes

ms
K , s ∈ VK defined by ms

K = 1
d

∑
σ∈EK∩Es

ms
σ dK,σ , and which satisfy mK = ∑

s∈VK
ms

K for all K ∈ T . The second
family is the set of the so called continuity points (xs

σ )σ∈Es ,s∈V such that xs
σ ∈ σ . On each continuity point xs

σ ,
the intermediate unknown us

σ is defined which will be used together with the cell unknowns uK , K ∈ T for the
construction of the discrete gradients defined in Section 3.
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Discrete function spaces. Let HD be the subspace of {(uK)K∈T , (us
σ )σ∈Es ,s∈V , uK,us

σ ∈ R} such that us
σ = 0 for all

s ∈ Vσ , σ ∈ Eext. The space HD is equipped with the following Euclidean structure defined by the inner product: for
(v,w) ∈ (HD)2,

[v,w]D =
∑
K∈T

∑
σ∈EK

∑
s∈Vσ

ms
σ

dK,σ

(
vs
σ − vK

)(
ws

σ − wK

)
(2)

and the associated norm: ‖u‖D = ([u,u]D)1/2. Let HT (Ω) ⊂ L2(Ω) be the space of piecewise constant functions
on each cell of the mesh T , equipped with the following norm: ‖u‖T = inf{‖v‖D, v ∈ HD,PT v = u} where for all
v ∈ HD , PT v ∈ HT (Ω) denotes the vector of HT (Ω) defined by (vK)K∈T .

3. The MPFA scheme and its discrete variational formulation

Let us define the discrete gradients (∇̃Dv)sK = 1
ms

K

∑
σ∈EK∩Es

ms
σ (vs

σ − vK)nK,σ , and (∇Dv)sK = (Bs
K)−1(∇̃Dv)sK

for each s ∈ VK , and K ∈ T , where the square matrix Bs
K is given by

Bs
K = 1

ms
K

∑
σ∈EK∩Es

ms
σ nK,σ

(
xs
σ − xK

)t
.

Note that the non singularity of the matrix Bs
K for all s ∈ VK , K ∈ T will derive from the stronger coercivity condition

stated in Section 4. Let aD be the bilinear form defined on HD × HD by

aD(u, v) =
∑
K∈T

∑
s∈VK

(
ms

K(∇Du)sK · ΛK(∇̃Dv)sK + αs
K

∑
σ∈EK∩Es

ms
σ

dK,σ

Rs
K,σ (u)Rs

K,σ (v)

)
,

for all u,v ∈ HD , where ΛK = 1
mK

∫
K

Λ(x)dx, and the residual function RK,σ is defined by Rs
K,σ (u) = us

σ − uK −
(∇Du)sK · (xs

σ − xK). Our scheme is defined by the following discrete hybrid variational formulation: find u ∈ HD
such that aD(u, v) = ∫

Ω
f (PT v) for all v ∈ HD .

Checking that aD(u, v) = ∑
K∈T

∑
σ∈EK

∑
s∈Vσ

F s
K,σ (u)(vK − vs

σ ), for all u,v ∈ HD with the following defini-
tion of the subfluxes

F s
K,σ (u) = −ms

σ ΛK(∇Du)sK · nK,σ − αs
Kms

σ

(
Rs

K,σ (u)

dK,σ

− (Bs
K)−1nK,σ

ms
K

·
∑

σ ′∈EK∩Es

ms
σ ′

d
K,σ

′
Rs

K,σ ′(u)
(
xs
σ ′ − xK

))
,

for all s ∈ Vσ , σ ∈ EK , K ∈ T , it is easily shown that the hybrid variational formulation is equivalent to the following
hybrid finite volume scheme: find u ∈ HD such that⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

−
∑

σ∈EK

FK,σ (u) =
∫
K

f (x)dx for all K ∈ T ,

FK,σ (u) =
∑
s∈Vσ

F s
K,σ (u) for all σ ∈ EK,K ∈ T ,

F s
K,σ (u) + F s

L,σ (u) = 0 for all s ∈ Vσ , Tσ = {K,L}, σ ∈ Eint.

(3)

Around each vertex s ∈ V , the face unknowns (us
σ )σ∈Es

can be eliminated in terms of the (uK)K∈Ts
solving the linear

system{
F s

K,σ (u) + F s
L,σ (u) = 0 for all σ ∈ Es ∩ Eint with Tσ = {K,L},

us
σ = 0 for all σ ∈ Es ∩ Eext.

(4)

The well-posedness of this system derives from the coercivity condition stated below in Section 4. It results that the
hybrid finite volume scheme reduces to a cell centered finite volume scheme for which the flux at each face σ ∈ E is
a linear combination of the cell unknowns uM with M ∈ ⋃

s∈Vσ
Ts .

For all s ∈ VK , K ∈ T , let us assume that qs
K = d , and that both sets (xs

σ − xK)σ∈EK∩Es
and (nK,σ )σ∈EK∩Es

span R
d . Then, it can be shown that our finite volume scheme (3) is equivalent to the usual MPFA O scheme, since

each discrete gradient (∇Du)sK matches with the gradient of the linear function uniquely defined by the d + 1 points
(xs

σ , us
σ )σ∈Es

, (xK,uK), and each residual Rs
K,σ (u) vanishes for all u ∈ HD . In addition the above formulation of the

scheme provides a generalization of the scheme described in [1,6] for more general polyhedral meshes.
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Fig. 2. Example of a trapezoidal mesh.

4. Coercivity and convergence of the MPFA O scheme

In order to obtain existence, uniqueness of the solution and stability estimates, a coercivity property is needed in
the sense that there exists a real β > 0 such that, for all u ∈ HD , aD(u,u) � β‖u‖2

D .
This is achieved imposing the following sufficient condition: there exists a real θ > 0 such that

coer(D,Λ) � θ, (5)

where coer(D,Λ) is defined by

coer(D,Λ) = min
K∈T , s∈VK

λmin
(
ΛKBs

K + (ΛKBs
K)t

)
. (6)

This condition can be easily computed for any given finite volume discretization D and diffusion tensor Λ. Assuming
that this condition holds uniformly, the following theorem is proved in [4]:

Theorem 4.1 (Convergence of the scheme). Let (D(n))n∈N be a family of finite volume discretization, let uD(n) ∈ HD(n)

be such that (3) holds, let regul(D(n)) � β for some β > 0, ratio(D(n)) � ζ for some ζ > 0 and coer(D(n),Λ) � θ

for some θ > 0. Then, PT uD(n) converges to ū in Lq(Ω), for all q ∈ [1,+∞) if d = 2 and all q ∈ [1,2d/(d − 2)) if
d > 2, as hD(n) → 0. Moreover, ∇̂D(n)uD(n) ∈ HT (Ω)d defined by mK(∇̂D(n)uD(n) )K = ∑

s∈VK
ms

K(∇D(n)u)sK for all

K ∈ T , converges to ∇ū in L2(Ω)d .

5. Numerical examples

Let us first discuss the coercivity condition (5) on a few examples. For all σ ∈ EK ∩ Es let us choose ms
σ =

mσ

cardinal(Vσ )
, xK the isobarycenter of the vertices of the cell K and let xs

σ be the center of gravity of the face σ .
Then, for parallelogram and parallelepiped cells, the matrix Bs

K is equal to I . In such a case, the MPFA O scheme
is symmetric and our sufficient condition of coercivity (5) is always satisfied. The same result holds for triangles
with xs

σ the barycenter with weights 2/3 at point s and 1/3 at the second end point of the edge σ . It holds again for
tetrahedrons with xs

σ the barycenter with weights 1/2 at point s and 1/4 at the two remaining vertices of the face σ .
Let us now consider the case d = 2 with Λ = I , and let σ1 and σ2 be the two edges shared by a given vertex s of a

given cell K . For σ = σ1, σ2, we assume that the continuity point xs
σ is the center of gravity xσ of the edge σ and that

ms
σ = |xσ − s|. Then, the condition λmin(B

s
K + (Bs

K)t ) � θ is equivalent to |xσ1 − xσ2 | |−−−→sxσ1 − −−−−→xσ2xK | � 2(1 − θ
2 )ms

K .

For example, the trapezoidal mesh exhibited Fig. 2 satisfies the coercivity condition (5) if and only if b−a
h

�
(1 − θ

2 ) 3a+b

(b2+h2)1/2 which exhibits the lack of robustness of the MPFA O scheme for distorted quadrangular meshes.
Next, in the following test case, the MPFA O scheme is compared with a symmetric coercive scheme presented in
[3] on a family of 2D distorted quadrangular meshes of the domain Ω = (0,1)2, and for an homogeneous anisotropic
diffusion tensor K = (

λ 0
0 1

)
, with midle anisotropy λ = 10 and high anisotropy λ = 1000. The meshes are obtained

by random distorsion of the uniform Cartesian meshes of size nx × nx with nx = 4,8,16,32,64,128 (see Fig. 3
for nx = 16). The right-hand side f of the diffusion equation (1) is defined in order to obtain the exact solution
u(x, y) = sin(πx) sin(πy).

Fig. 3 exhibits that the MPFA O scheme is more accurate then the symmetric unconditionally coercive scheme [3]
on mildly anisotropic test cases but it lacks robustness due to the breakdown of the coercivity for problems combining



1012 L. Agelas, R. Masson / C. R. Acad. Sci. Paris, Ser. I 346 (2008) 1007–1012
Fig. 3. Mesh of size nx = 16, and convergence of the L2 error (erl2) for the MPFA O scheme and the Symmetric scheme for λ = 10 (left), and
λ = 1000 (right) (nunkw denotes the number of cells n2

x ).

both distorted meshes and high anisotropy. However, this additional robustness of the symmetric coercive scheme [3]
is obtained at the price of much larger flux and scheme stencils, and the MPFA O scheme exhibits a good compromise
between robustness and CPU time efficiency.
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